首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

2.
Outdoor levels of fine particles (PM2.5; particles <2.5 μm) have been associated with cardiovascular health. Persons with existing cardiovascular disease have been suggested to be especially vulnerable. It is unclear, how well outdoor concentrations of PM2.5 and its constituents measured at a central site reflect personal exposures in Southern European countries. The objective of the study was to assess the relationship between outdoor and personal concentrations of PM2.5, absorbance and sulphur among post-myocardial infarction patients in Barcelona, Spain.Thirty-eight subjects carried personal PM2.5 monitors for 24-h once a month (2–6 repeated measurements) between November 2003 and June 2004. PM2.5 was measured also at a central outdoor monitoring site. Light absorbance (a proxy for elemental carbon) and sulphur content of filter samples were determined as markers of combustion originating and long-range transported PM2.5, respectively.There were 110, 162 and 88 measurements of PM2.5, absorbance and sulphur, respectively. Levels of outdoor PM2.5 (median 17 μg m3) were lower than personal PM2.5 even after excluding days with exposure to environmental tobacco smoke (ETS) (median after exclusion 27 μg m3). However, outdoor concentrations of absorbance and sulphur were similar to personal concentrations after exclusion of ETS. When repeated measurements were taken into account, there was a statistically significant association between personal and outdoor absorbance when adjusting for ETS (slope 0.66, p<0.001), but for PM2.5 the association was weaker (slope 0.51, p=0.066). Adjustment for ETS had little effect on the respective association of S (slope 0.69, p<0.001).Our results suggest that outdoor measurements of absorbance and sulphur can be used to estimate both the daily variation and levels of personal exposures also in Southern European countries, especially when exposure to ETS has been taken into account. For PM2.5, indoor sources need to be carefully considered.  相似文献   

3.
Little is known about particulate elemental carbon (EC) personal exposure levels, a key component of diesel exhaust, specifically in transport microenvironments. A method utilizing the optical properties of EC particles has been applied to personal exposure measurement filter samples. In a series of field studies carried out in London, UK, during 1999–2000 over 400 fine particle (PM2.5) personal exposure level measurements were taken for journeys in bicycle, bus, car and underground rail transport microenvironments, along three main fixed routes. The particulate EC contribution to the PM2.5 personal exposure was assessed indirectly by means of an optical technique and with the development and use of a size fraction specific and site-specific calibration curve. In this first EC personal exposure study of transport users geometric mean exposure levels in the summer field campaign were 11.2 μg m−3 (GSD=2.7) for cyclists, 13.6 μg m−3 (GSD=1.9) for bus passengers and 21.6 μg m−3 (GSD=2.1) for car drivers; corresponding exposure levels in the winter were 16.4 μg m−3 (GSD=1.8), 18.6 μg m−3 (GSD=2.3) and 27.3 μg m−3 (GSD=2.0), respectively. EC/PM2.5 ratios were approximately 0.5–0.6 for bicycle and bus modes and 0.7–0.8 for the car mode. EC/PM2.5 ratios for different routes ranged from approximately 0.7 for Route 1 to 0.4 for Route 3. Cyclists had the lowest exposure to EC, and car occupants the highest exposure. A large difference in exposure levels between a central high traffic density route and the other less central routes was observed. Particulate EC was a very significant proportion of the total PM2.5 personal exposure and EC personal exposure levels were considerably higher than reported fixed site monitor EC concentrations.  相似文献   

4.
Many individuals work outdoors in the formal and informal economy of the large urban areas in developing countries, where they are potentially exposed for long periods to high concentrations of ambient airborne particulate matter (PM). This study describes the personal exposures to PM of 2.5 μm aerodynamic diameter and smaller (PM2.5) for a sample of outdoor and indoor workers in two cities, Mexico City and Puebla, in central Mexico.Thirty-six workers in Mexico City and 17 in Puebla were studied. Thirty were outdoor workers (i.e., taxi and bus drivers, street vendors, and vehicle inspectors) and 23 were indoor (office) workers. Their personal exposures to PM2.5 were monitored for a mean 19-h period. In Mexico City, the street vendors and taxi drivers overall exposures were significantly higher than indoor workers were. In Puebla, bus drivers had a higher overall exposure than vehicle inspectors or indoor workers. Most of the exposures were above the 65 μg m−3 24-h Mexican standard.In Mexico City, exposures to Si, Ti, Cr, Mn, Fe, Ni, Cu, Mo and Cd were higher for outdoor than for indoor workers. In Puebla, exposures to Si, S, K, Ca, Ti, V, Mn, and Zn also were higher for outdoor workers. In Mexico City outdoor workers exposures to Cu, Pb, Cr, Se and Mo were 4 or more times higher than for Puebla outdoor workers, while Puebla outdoor workers’ exposures to V, Si, Fe and Ca were 3 or more times higher than Mexico City outdoor workers.These results suggest that for these outdoor workers the elevated local ambient air PM concentrations and an extended period spent outside are more important contributors to total exposures than indoor concentrations. These workers could be at particular risk of increased morbidity and mortality associated with ambient PM.  相似文献   

5.
Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 μm cut-point. The concentration of the coarse fraction of PM10 (PM10−2.5) was calculated as the difference between the PM10 and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 μg m−3 for PM10, from 29 to 68 μg m−3 for PM2.5 and from 12 to 40 μg m−3 for PM10−2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 μg m−3 in the Slovak Republic to 45 μg m−3 in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10−2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating.  相似文献   

6.
Children’s exposures to ambient and non-ambient fine particulate matter (PM2.5) were determined using the sulphate and elemental carbon components of the PM2.5 mixture as tracers of the ambient contribution during a 6-week winter period in Prince George, British Columbia, Canada. Personal exposures to PM2.5 were measured in children at 5 elementary schools located throughout the city and ambient samples were collected on school rooftops. Average ambient levels and personal exposures during this time period were 13.8 μg m?3 and 16.4 μg m?3 respectively. From the data pooled across individuals, use of the two different tracers indicated identical estimates of median exposure to ambient PM2.5 (7.5 μg m?3) and similar estimates of non-ambient generated exposure (6.4 and 5.0 μg m?3) and infiltration (0.49 and 0.52) for the sulphate and elemental carbon approach, respectively. The median fraction of the ambient concentration resulting in exposure or exposure factors were 0.54 and 0.55 respectively, however lower values of 0.46 and 0.42 were determined from regression analysis. A strong association was found between exposure to ambient PM2.5 and measured ambient concentrations at both the closest school monitor (median r = 0.92) and a central site (median r = 0.88) demonstrating that the central site monitor was suitable for assessing longitudinal ambient generated exposure throughout the city. These results support the use of elemental carbon as a tracer of ambient generated exposure and the use of ambient data as estimates of longitudinal changes in children’s exposure in this setting. The importance of both ambient and non-ambient sources of PM2.5 is emphasized by their almost equal contribution to total personal exposures. Comparison with other studies suggests a limited influence of climate and the cold season in Prince George on exposure levels and found similar mean non-ambient generated exposures despite large variability across and within subjects in any given location.  相似文献   

7.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

8.
Methylcyclopentadienyl manganese tricarbonyl (MMT), a manganese-based gasoline additive, has been used in Canadian gasoline for about 20 yr. Because MMT potentially increases manganese levels in particulate matter resulting from automotive exhausts, a population-based study conducted in Toronto, Canada assessed the levels of personal manganese exposures. Integrated 3-day particulate matter (PM2.5) exposure measurements, obtained for 922 participant periods over the course of a year (September 1995–August 1996), were analyzed for several constituent elements, including Mn. The 922 measurements included 542 participants who provided a single 3-day observation plus 190 participants who provided two observations (in two different months). In addition to characterizing the distributions of 3-day average exposures, which can be estimated directly from the data, including the second observation for some participants enabled us to use a model-based approach to estimate the long-term (i.e. annual) exposure distributions for PM2.5 mass and Mn. The model assumes that individuals’ 3-day average exposure measurements within a given month are lognormally distributed and that the correlation between 3-day log-scale measurements k months apart (after seasonal adjustment) depends only on the lag time, k, and not on the time of year. The approach produces a set of simulated annual exposures from which an annual distribution can be inferred using estimated correlations and monthly means and variances (log scale) as model inputs. The model appeared to perform reasonably well for the overall population distribution of PM2.5 exposures (mean=28 μg m-3). For example, the model predicted the 95th percentile of the annual distribution to be 62.9 μg m-3 while the corresponding percentile estimated for the 3-day data was 86.6 μg m-3. The assumptions of the model did not appear to hold for the overall population of Mn exposures (mean=13.1 ng m-3). Since the population included persons who were potentially occupationally exposed to Mn (in non-vehicle-related jobs), we used responses to questionnaire items to form a subgroup consisting of non-occupationally exposed participants (671 participant periods), for which the model assumptions did appear to hold. For that subpopulation (mean=9.2 ng m-3), the model-predicted 95th percentile of the annual Mn distribution was 16.3-ng m-3, compared with 21.1 ng m-3 estimated for the 3-day data.  相似文献   

9.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

10.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

11.
Several types of fuels, including coal, fuel wood, and biogas, are commonly used for cooking and heating in Chinese rural households, resulting in indoor air pollution and causing severe health impacts. In this paper, we report a study monitoring multiple pollutants including PM10, PM2.5, CO, CO2, and volatile organic compounds (VOCs) from fuel combustion at households in Guizhou province of China. The results showed that most pollutants exhibited large variability for different type of fuels except for CO2. Among these fuels, wood combustion caused the most serious indoor air pollution, with the highest concentrations of particulate matters (218~417 μg m?3 for PM10 and 201~304 μg m?3 for PM2.5), and higher concentrations of CO (10.8 ± 0.8 mg m?3) and TVOC (about 466.7 ± 337.9 μg m?3). Coal combustion also resulted in higher concentrations of particulate matters (220~250 μg m?3 for PM10 and 170~200 μg m?3 for PM2.5), but different levels for CO (respectively 14.5 ± 3.7 mg m?3 for combustion in brick stove and 5.5 ± 0.7 mg m?3 for combustion in metal stove) and TVOC (170 mg m?3 for combustion in brick stove and 700 mg m?3 for combustion in metal stove). Biogas was the cleanest fuel, which brought about the similar levels of various pollutants with the indoor case of non-combustion, and worth being promoted in more areas. Analysis of the chemical profiles of PM2.5 indicated that OC and EC were dominant components for all fuels, with the proportions of 30~48%. A high fraction of SO42? (31~34%) was detected for coal combustion. The cumulative percentages of these chemical species were within the range of 0.7~1.3, which was acceptable for the assessment of mass balance.  相似文献   

12.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

13.
Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms.On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004–2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various dust particle fractions (PM10, PM2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom.The median indoor CO2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m−3 (PM2.5) and 91.5 μg m−3 (PM10) were observed, in summer PM concentrations were significantly reduced (median PM2.5=12.7 μg m−3, median PM10=64.9 μg m−3). PM2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m−3, median in summer: 20.2 μg m−3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM2.5 by 1.7 μg m−3 per increase in humidity by 10%, by 0.5 μg m−3 per increase in CO2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m−3 in 5–7th grade classes and by 7.3 μg m−3 in class 8–11 compared to 1–4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m−3 per increase in 10% humidity) and absent regarding CO2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm−3 (median: 5660 particles cm−3).The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools.  相似文献   

14.
Rigorous sampling and quality assurance protocols are required for the reliable measurement of personal, indoor and outdoor exposures to metals in fine particulate matter (PM2.5). Testing of five co-located replicate air samplers assisted in identifying and quantifying sources of contamination of filters in the laboratory and in the field. A field pilot study was conducted in Windsor, Ont., Canada to ascertain the actual range of metal content that may be obtained on filter samples using low-flow (4 L min−1) 24-h monitoring of personal, indoor and outdoor air. Laboratory filter blanks and NIST certified reference materials were used to assess contamination, instrument performance, accuracy and precision of the metals determination. The results show that there is a high risk of introducing metal contamination during all stages of sampling, handling and analysis, and that sources and magnitude of contamination vary widely from element to element. Due to the very small particle masses collected on low-flow 24-h filter samples (median 0.107 mg for a sample volume of approximately 6 m3) the contribution of metals from contamination commonly exceeds the content of the airborne particles being sampled. Thus, the use of field blanks to ascertain the magnitude and variability of contamination is critical to determine whether or not a given element should be reported. The results of this study were incorporated into standard operating procedures for a large multiyear personal, indoor and outdoor air monitoring campaign in Windsor.  相似文献   

15.
This study examined commuter’s exposure to respirable suspended particulate matters while commuting in public transportation modes. The survey was conducted between October 1999 and January 2000 in Hong Kong. A total of eight public transportation modes, that are bus, tram, public light bus, taxi, ferry, Kowloon–Canton Railway, Mass Transit Railway and Light Rail Transit, were selected in the study. They were grouped into four categories: (T1) railway transport; (T2) non-air-conditioned roadway transport; (T3) air-conditioned roadway transport and (T4) marine transport. Both PM10 and PM2.5 levels were investigated. The results indicate that the particulate level is greatly affected by the mode of transport as well as the ventilation system of the transport. The overall average PM10 concentration level in T2 (147 μg m−3) is the highest and is followed by T4 (81 μg m−3) and T3 (65 μg m−3). The PM10 level in T1 (50 μg m−3) is the lowest. Notably, the commuter exposure in tram (175 μg m−3) is the highest among all the monitored commuting modes. Commuting modes such as railway and air-conditioned vehicle are recommended as a substitute for non-air-conditioned vehicle. The PM2.5 to PM10 ratio in transports ranged from 63% to 78%. Higher PM2.5 to PM10 ratio is found in vehicles with air-conditioning system. For the double deck vehicle, higher PM10 level has resulted in the lower deck. The average upper-deck to lower-deck PM10 ratio is 0.836, 0.751 and 0.738 in air-conditioned bus, non-air-conditioned bus and non-air-conditioned tram, respectively. Typical concentration profiles in different transports are also presented.  相似文献   

16.
In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM10 and PM2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m−3) and the overall daily average PM10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m−3). The maximum daily PM2.5 and PM10 concentrations reached 178.7 and 368.1 μg m−3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m−3 in PM2.5 and 30.0 and 13.0 μg m−3 in PM10, respectively. PM, especially PM2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8–5.1 for PM2.5 and 2.0–4.3 for PM10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28.1% of OC in PM2.5 and PM10, respectively, with higher percentages at the higher levels of the tower.  相似文献   

17.
Aluminium (Al) is one of the trace inorganic metals present in atmospheric particles. Al speciation study is essential to better evaluate the mobility, availability, and persistence of trace Al and Al species in the atmosphere. This paper reports Al distribution and speciation in atmospheric particles with aerodynamic diameters >10.0, 10.0–2.5 and <2.5 μm in the urban area of Nanjing, China. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into three size ranges. Particulate Al was fractionated into five different forms (insoluble, oxide, organic, carbonate, and exchangeable species) by the modified five-step Tessier's sequential extraction procedure. The main points are as follows: (1) The average levels of Al in PM2.5, PM2.5–10 and PM>10 are 2.02±0.35, 3.04±0.43 and 6.32±0.76 μg m−3, respectively, with PM2.5, PM2.5–10 and PM>10 constituting respectively, 17.8±3.1%, 26.7±3.8% and 55.5±6.7% of suspended particulate matter (SPM) mass (11.38 μg m−3). (2) The vertical profile of airborne Al in the above three size fractions has been estimated. A significant increase in airborne Al concentrations was found for PM2.5, PM2.5–10 and PM>10 as the sampling height above the ground increased from 2.5 to 17.5 m; however, there was an obvious decrease in airborne Al concentrations between 17.5 and 40.0 m. The maximum mean of total Al in PM2.5, PM2.5–10 and PM>10 occurred between 12.5 and 20.0 m above the ground. (3) The distribution of Al speciation was studied. It was found that the size distribution of airborne Al species followed the order: insoluble species>oxide species>organic species>carbonate species>exchangeable species.  相似文献   

18.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

19.
This study investigates the levels of particulate matter smaller than 2.5 μm (PM2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM2.5 in the 12 photocopy centers ranged from 10 to 83 μg m−3 with an average of 40 μg m−3. The 24-h indoor PM2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m−3, the 24-h indoor PM2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm−3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be concerned in view of indoor air quality and human health. The corona devices in photocopiers and photocopier-emitted VOCs have the potential to initiate indoor air chemistry during photocopying and result in the formation of UFP.  相似文献   

20.
Personal exposures and microenvironmental concentrations of benzene were measured in the residential indoor, residential outdoor and workplace environments for 201 participants in Helsinki, Finland, as a component of the EXPOLIS-Helsinki study. Median benzene personal exposures were 2.47 (arithmetic standard deviation (ASD)=1.62) μg m−3 for non-smokers, 2.89 (ASD=3.26) μg m−3 for those exposed to environmental tobacco smoke in any microenvironment and 3.08 (ASD=10.04) μg m−3 for active smokers. Median residential indoor benzene concentrations were 3.14 (ASD=1.51) μg m−3 and 1.87 (ASD=1.93) μg m−3 for environments with and without tobacco smoke, respectively. Median residential outdoor benzene concentrations were 1.51 (ASD=1.11) μg m−3 and median workplace benzene concentrations were 3.58 (ASD=1.96) μg m−3 and 2.13 (ASD=1.49) μg m−3 for environments with and without tobacco smoke, respectively. Multiple step-wise regression identified indoor benzene concentrations as the strongest predictor for personal benzene exposures of those not exposed to tobacco smoke, followed sequentially by time spent in a car, time in the indoor environment, indoor workplace concentrations and time in the home workshop. Relationships between indoor and outdoor microenvironment concentrations and personal exposures showed considerable variation between seasons, due to differences in ventilation patterns of homes in these northern latitudes. Automobile use-related activities were significantly associated with elevated benzene levels in personal and indoor measurements when tobacco smoke was not present, which demonstrates the importance of personal measurements in the assessment of exposure to benzene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号