首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 184 毫秒
1.
通过采样分析,研究了不同月份各采样点TSP质量浓度、同一时间各采样点TSP和PM10质量浓度,并对桂林市大气颗粒物中无机离子(Cl-、NO-3、SO2-4、K+、Na+、Ca2+、Mg2+、NH4+)进行定量分析测定。结果表明:桂林市大气颗粒物TSP质量浓度在11月要高于8月,3个监测点TSP日均值分别为0.2213,0.2775,0.1301 mg/m3;TSP与PM10质量浓度的相关系数为0.7406,PM10/TSP比值达到0.71以上,颗粒物构成基本相同。桂林市大气颗粒物中水溶性无机离子主要以SO2-4,Cl-,Ca2+,NH4+,Na+和K+为主,桂林市第八中学、八里街第一小学、建干路三采样点的无机离子组分状态大体相同,但存在个体差异。  相似文献   

2.
长沙市夏季PM10和PM2.5中水溶性离子的污染特征   总被引:17,自引:1,他引:17       下载免费PDF全文
对长沙市3个采样点夏季大气中的PM10和PM2.5样品pH值和水溶性离子浓度进行了定量分析.结果表明,颗粒物中主要离子是SO42-、NO3-、NH 和Ca2 ;PM10、PM2.5、NH4 和K 浓度夜间高于白天;SO42-和NO3-则相反.颗粒物尤其是PM2.5酸性强;Mg2 、Ca2和Na 集中在粗粒子中,SO42-、NH4 和K 大部分分布在细颗粒物中,NO3-和Cl-在粗细颗粒段则各占一半.SO2气体发生了二次转化,NO2的转化率不及SO2;由于NO3-/SO42-质量比<1,长沙市的大气污染物来源以固定源为主.  相似文献   

3.
沙尘天气对兰州市PM10中主要水溶性离子的影响   总被引:3,自引:3,他引:0  
王芳  陈强  张文煜  郭勇涛  赵连彪 《环境科学》2014,35(7):2477-2482
利用在线监测仪器MARGA在兰州大学盘旋路校区对兰州市大气PM10中水溶性离子进行监测,监测期间(2011-04-01~2011-06-30)有15 d出现沙尘天气.兰州市PM10中主要水溶性离子物种为Ca2+、SO2-4和NO-3.扬沙天气期间NO-3和NH+4的浓度比非沙尘期间低,说明沙尘天气对当地人为源所排放污染物具有清除作用.沙尘天气期间,作为土壤污染源标识物的Mg2+、Na+和Ca2+离子都有明显增加,Na+和Mg2+相关系数为0.520,Na+和Ca2+相关系数为0.659,Mg2+和Ca2+相关系数为0.671,而非沙尘天气期间三者的相关系数并不高,Na+和Mg2+相关系数为0.065,Na+和Ca2+相关系数为0.131,Mg2+和Ca2+相关系数为0.163,说明沙尘天气期间三者之间具有相同的污染源,主要来自于土壤风沙尘,而非沙尘天气期间三者来源不同.Cl-的浓度在扬沙天气明显高于浮尘和非沙尘天气期间,说明外来的土壤风沙尘是Cl-的主要来源.  相似文献   

4.
2011年8月—2012年7月期间,利用中流量(100 L·min-1)大气采样器对东莞市A和B两点(A:生活区,B:工业区)进行PM1、PM1~2.5、PM2.5~10采样,并定量分析颗粒物上F-、Cl-、NO-3、SO2-4、NH+4、Na+、K+、Ca2+、Mg2+等9种水溶性无机离子.分析结果显示,工业区B点的细粒子污染较生活区A点严重,B点PM1质量浓度年均值为48μg·m-3,其浓度是A点的1.2倍.A、B两点PM1对PM2.5和PM10的质量贡献率无明显差异,平均贡献率分别高达69%和45%.二次离子SO2-4、NO-3、NH+4及与燃烧行为有关的K+、Cl-等5种离子在细粒子PM1上富集,这5种离子对PM1质量的贡献率分别为18.82%~19.76%、4.98%~5.47%、3.98%~4.12%、2.03%~2.27%和3.39%~3.78%.而其他4种离子,Ca2+、Mg2+、F-和Na+积聚在粗粒子PM2.5~10上.PM10/PM2.5/PM1三种粒子中,PM1粒子酸性值AE/CE(阴离子当量浓度/阳离子当量浓度)比值和硫转化率SOR、氮转化率NOR值均是最高.  相似文献   

5.
2018年11月底淄博市经历了一次沙尘影响下的大气重污染过程,为研究此次重污染过程形成机制,分析了淄博市ρ(PM10)和ρ(PM2.5)及PM2.5化学组分特征,并利用PMF模型和后向轨迹模型对颗粒物的来源进行研究.结果表明:①污染期间,ρ(PM10)和ρ(PM2.5)小时平均值分别为(259±111)和(133±51)μg/m3,分别是污染后ρ(PM10)〔(88±38)μg/m3〕和ρ(PM2.5)〔(36±14)μg/m3〕的2.9和3.7倍.②受沙尘的影响,Ca2+、Mg2+、Al、Mg、Ca、Si等代表沙尘源的离子和元素组分的质量浓度在PM2.5中占比均高于污染后.③ 72 h后向轨迹结果表明,除受西北方向沙尘传输气流影响外,局地盘旋的当地气流也增加了污染物的累积,此次大气污染过程是本地污染物累积及西北沙尘传输共同作用形成的.④ PMF模型解析表明,污染期间扬尘源是PM2.5的首要贡献源类,贡献率达33.61%,说明沙尘过境对此次污染过程有较大贡献;污染后工业源贡献显著增高,成为主要污染源,贡献率为22.71%,体现了淄博市是重工业城市的特点.研究显示,淄博市此次重污染过程颗粒物来源复杂,除受本地区域污染影响外,外来沙尘过境贡献也较大.   相似文献   

6.
为了研究中国海峡西岸城市群冬季大气颗粒物水溶性离子的污染特征,采集该区域8个城市共14个采样点位(包含1个背景点)的PM2.5和PM2.5~10样品,采用离子色谱分析F-、Cl-、NO3-、SO42-、Na+、K+、NH4+、Ca2+和Mg2+ 9种水溶性离子的质量浓度.结果表明,海峡西岸城市群冬季大气颗粒物污染严重,PM2.5和PM10的日均值分别为89.65,135.65μg/m3,PM2.5占PM10的66.1%.城区水溶性无机离子主要集中在PM2.5上,其浓度分布存在空间差异,温州地区水溶性无机离子浓度处于较高水平;SO42-、NO3-和NH4+是水溶性无机离子的主要贡献者,其占PM2.5 中水溶性离子总量的79.6%~89.0%,占PM10的74.2%~83.4%.由于受冬季季风的影响,该区域非海盐离子对水溶性无机离子的贡献较大.NO3-/SO42-的质量浓度比显示,冬季海峡西岸城市群已处于机动车污染与燃煤污染并存的复合型污染状态.  相似文献   

7.
于2011年4月28日~5月18日对上海大气中颗粒物的质量浓度及细粒子中的化学组分进行了连续观测,获得了上海受春季沙尘天气影响下大气颗粒物质量浓度和主要化学组分特征.结果表明,沙尘天气中PM10和PM2.5的质量浓度显著高于非沙尘天,最高日均浓度分别达到787.2μg·m-3和139.5μg·m-3,PM2.5/PM10的均值为(32.9±14.6)%(15.6%~85.1%);总水溶性无机离子(TWSⅡ)占PM2.5的质量分数为(27.2±19.2)%(4.8%~80.8%),二次组分SNA(SO2-4、NO-3、NH+4)占TWSⅡ的(76.9±13.9)%(41.9%~94.2%),TWSⅡ和SNA对PM2.5的贡献均小于非沙尘天,而Ca2+的含量比却有明显上升.非沙尘天测得的OC/EC值高于强沙尘天,但低于弱沙尘天.此外分析还得到,沙尘中的高矿尘粒子具有酸性缓冲作用,使得沙尘天颗粒的碱性强于沙尘发生前.非沙尘天SO2-4、NO-3主要以NH4HSO4、(NH4)2SO4和NH4NO3的形式存在,沙尘天还会与其他矿物离子结合.  相似文献   

8.
京津冀地区城市环境空气颗粒物及其元素特征分析   总被引:4,自引:0,他引:4  
于2013年四个季度,选择京津冀3个主要城市和1个对照点,以及4个全国大气背景站,同步采集环境空气颗粒物PM10和PM2.5样品,采用微波消解ICP-MS法分析样品中的68种元素.结果表明,京津冀3个城市四个季度PM10和PM2.5均超过国家二级标准限值,且采暖季高于非采暖季.全年PM2.5/PM10比值大于0.5,细颗粒物污染占主导.元素在PM2.5中所占比例高于PM10.而背景点颗粒物浓度低于标准限值,远低于城市点,且四个季节变化不大.在检出的57种元素中, Na、Mg、Al、S、K、Ca、Fe、Zn在0.1~10 μg/m3之间,P、Ti、Mn、Ni、Cu、Ba、Pb在10~100ng/m3之间,其他含量较低元素如Cd、Co、Ge、Ga、Zr、Sr、V等在0.01~10ng/m3之间.元素S、Na、K、Al、Fe、Mg、Ca等含量大于1%,P、Zn、Pb、Cu、Ba等其他元素含量介于0.1%~1%.富集因子分析结果提示,K、Ca、Cr、Fe、Cu、Zn、As、Cd和Pb等9种元素主要来源于人为污染,采暖季与非采暖季富集因子比值在1.1~3.5之间.因子分析提示,燃煤、工业污染源、燃油等是颗粒物污染的主要贡献因素.  相似文献   

9.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:46,自引:4,他引:46       下载免费PDF全文
在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献   

10.
为了探讨华东高山背景区域春季颗粒物中水溶性组分的特征,2014年3月至5月在国家大气背景监测福建武夷山站采集PM2.5及PM2.5~10样品,获取了水溶性无机离子组分,并同步收集气象因子及SO2、NO2、O3、PM10和PM2.5等污染物质量浓度数据.结果表明,春季武夷山背景点PM2.5和PM2.5~10中水溶性无机离子总浓度分别为(8.3±2.8)μg·m-3和(1.3±0.9)μg·m-3,分别占PM2.5和PM2.5~10质量浓度的(43.7±7.5)%和(24.4±6.4)%.SO2-4占PM2.5质量浓度百分比最高,为(32.4±6.3)%;NO-3占PM2.5~10质量浓度百分比最高,为(8.9±3.7)%.春季武夷山背景点硫酸盐主要存在于细颗粒物中,且以(NH4)2SO4和K2SO4的形式存在,粗颗粒中的硝酸盐则主要以Mg(NO3)2的形式存在.春季武夷山背景点水溶性无机离子主要来源于沙尘、海盐及高污染区域的远距离输送.  相似文献   

11.
北方强沙尘暴天气过程对广州空气质量影响的个例分析   总被引:5,自引:1,他引:4  
2009年4月23—25日,我国内蒙古、甘肃、陕西等地区出现了1次强沙尘暴天气过程,沙尘暴产生的浮尘自北南下,于26日开始影响广州.期间,沙尘暴沿途城市的可吸入颗粒物(PM10)浓度先后升高.本文通过对广州4月27日—29日(浮尘时段)和5月12—14日(非浮尘时段)的空气颗粒物进行质量浓度分析,发现浮尘时段PM10的浓度均值为0.231mg·m-3,较非浮尘时段(0.103mg·m-3)大1倍.化学分析结果发现金属元素含量、金属元素富集因子、可溶性阴阳离子含量等在这两个时段也均存在显著差异.浮尘时段颗粒物中金属元素含量的总浓度为53.5μg·m-3,比非浮尘时段的总浓度(28.5μg·m-3)翻了近1倍.浮尘时段的Na、Ti、Zn、Cu、Cr浓度较非浮尘时段的增加幅度在0~100%之间,从富集因子来看,非浮尘时段均高于浮尘时段,说明污染源主要来自广州本地源;浮尘时段的K、Mg、Al、Fe、Mn、V、Co浓度较非浮尘时段的增幅在100%以上,其富集因子均高于非浮尘时段,说明污染源主要来自于外来源;而Ni、Pb、Cd3种元素浓度增幅为负值,说明沙尘携带这3种元素的量可以忽略,且冷空气的稀释作用使得它们在浮尘时段的富集系数远远低于非浮尘时段.另外,通过对水溶性离子的分析发现,浮尘天气时段空气颗粒物中各种水溶性阴阳离子含量都有所升高,但NH4+、NO3-、SO24-3种离子的质量浓度,无论在浮尘还是非浮尘时段,差别均不显著(均占约82%),说明这3种离子都是PM10中最主要的可溶性阴阳离子.并且从浮尘时段的气象场分析和后向轨迹计算表明,此次广州沙尘的源地来自内蒙地区.  相似文献   

12.
基于PM、10nm~10μm气溶胶数谱、水溶性离子和气象要素数据,分析了2017年5月3日~8日一次沙尘远距离输送过程中长三角地区气溶胶粒径分布及其化学组成的污染特征.结果表明,此次沙尘伴随天气系统由北往南的传输过程中,PM的浓度逐渐降低,但是高浓度PM持续时间逐渐增加.沙尘在呼和浩特市影响时间为38h,而在南京的影响时间超过60h.沙尘期间气溶胶数浓度谱的峰值向大粒径段偏移,沙尘和非沙尘期间峰值分别位于33和26nm.表面积浓度谱在非沙尘期间为三峰型分布,但是在沙尘期间为四峰型分布.在沙尘期间PM2.5和PM10中水溶性离子的排序为Ca2+ > NH4+ > SO42- > NO3- > Mg2+ > Na+ > Cl- > NO2- > K+ > F-,非沙尘期间为NH4+ > SO42- > NO3- > Mg2+ > Ca2+ > Cl- > NO2- > K+ > Na+ > F-.沙尘期间不同水溶性离子的浓度变化不同,沙尘天PM2.5和PM10中Ca2+浓度分别是非沙尘天的9.5和13.7倍,Na+分别是非沙尘天的4.4倍和4.6倍.沙尘天PM2.5和PM10中Ca2+占总离子的比例分别为24.7%和24.9%,是非沙尘天的4.9和5.7倍.NO3-在PM10中的占总离子的比例为18.7%,高于非沙尘天(13.9%),但是在PM2.5中占总离子的比例仅为7.9%,低于非沙尘天(13.2%).沙尘天F-、Cl-、SO42-、NH4+和K+离子在PM2.5和PM10中所占总离子的比例均低于非沙尘天.  相似文献   

13.
重庆市主城区不同粒径颗粒物水溶性无机组分特征   总被引:15,自引:2,他引:13  
张丹  翟崇治  周志恩  张灿 《环境科学研究》2012,25(10):1099-1106
于2010年3月—2011年7月,在重庆市主城区同步采集PM1.0、PM2.5和PM10三种粒径的颗粒物样品. 用离子色谱分析了样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+和Ca2+ 9种水溶性无机组分,并收集了SO2和NO2等气体污染物的数据. 结果表明:采样期间ρ(PM1.0)、ρ(PM2.5)和ρ(PM10)分别为82.9、104和160 μg/m3,PM1.0、PM2.5、PM10中所测9种水溶性无机组分的浓度之和分别为40.82、48.66和57.99 μg/m3. ρ(SO42-)、ρ(NO3-)和ρ(NH4+)相对较高,并且主要分布在细颗粒物中. 多数水溶性无机组分浓度冬季最高,春季其次,夏、秋季浓度偏低. 所测组分溶液的pH显酸性,冬季样品的pH最低,细粒子的酸性要强于粗粒子. SOR(硫的氧化率)与NOR(氮的氧化率)与国内其他地区相比较高,SOR秋季最高,NOR冬季最高. 因子分析结果表明,化石燃料以及生物质的燃烧、机动车尾气排放是水溶性无机组分的主要来源,建筑施工、土壤风沙等扬尘类污染源对水溶性无机组分也有一定的贡献.   相似文献   

14.
新疆部分城市可吸入颗粒物的浓度及粒径分布   总被引:2,自引:0,他引:2  
采用TH-β10大气颗粒物浓度监测仪,从2011年4-5月在乌鲁木齐、奎屯、阿克苏、库尔勒、喀什、和田市环境监测站采集大气可吸入颗粒物PM2.5、PM5和PM10样品,分析了不同采样点大气颗粒物的质量浓度变化范围及与TSP的相应比值。结果表明,不论是PM2.5、PM5还是PM10,阿克苏市可吸入颗粒物的质量浓度变化幅度较大,其次是库尔勒市,其余采样点在采样期间的浓度变化幅度不大,并且库尔勒、喀什、奎屯、阿克苏四个城市PM5/TSP和PM2.5/TSP的比例大,除喀什、阿克苏的PM10/TSP的比例接近于1之外,其余可吸入颗粒物的浓度均小于TSP;采用显微镜观测成像技术结合血球计数板方法,利用粒径分布函数分析对六个城市的PM10和5个城市的PM2.5颗粒物在不同粒径的分布进行了分析。结果表明,对于PM10而言,阿克苏在dp<0.5的粒径范围内分布函数高达79%、喀什在dp=0.5~0.6μm之间为44%、和田则在dp=1.2~2.2μm出现20%的最大粒径分布函数。就PM2.5而言,库尔勒在dp<0.5、dp=0.5~0.6、0.6~1.2μm区间内的分布函数均为最大值,其值分为79%、50%、50%,可以说明在采样期间,库尔勒市区的颗粒物在粒径小于1.2μm出现的几率更大些,即颗粒物以积聚模态为主。  相似文献   

15.
南京地区大气气溶胶及水溶性无机离子特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
于2010~2011年在南京市城郊两个采样点收集了气溶胶样品,并利用离子色谱(IC)法分析了其中的水溶性无机离子成分.结果表明,采样期间除了夏季,其他3个季节南京城郊气溶胶污染都较严重.南京城郊气溶胶谱分布特征基本在0.65~2.1μm和5.8~9μm粒径段出现峰值.PM2.5与能见度的相关性很大.城郊离子总质量浓度均是春冬季高于夏秋季,四季阴离子质量浓度明显高于阳离子,且这一特征在细粒子上表现明显.水溶性离子在气溶胶中所占比例是夏秋冬季城区高于郊区.南京城郊NO3-/SO42-年均值表明采样期间燃煤仍然是主要污染源,且该比值夏季最低,冬季最高.NH4+、K+、NO3-和SO42-主要富集在细粒子上;Na+、Cl-和NO2-在粗粒子和细粒子上都有富集;Ca2+、Mg2+和F-主要在粗粒子上富集.因子分析(FA)的方法表明南京城区气溶胶主要有3个来源.  相似文献   

16.
北京大气PM10中水溶性金属盐的在线观测与浓度特征研究   总被引:3,自引:1,他引:2  
研究了北京大气可吸入气溶胶(PM10)中水溶性金属盐的变化特征,并对其来源进行了分析。钠盐、钾盐、镁盐、钙盐浓度的变化范围分别为:0.5~1.4μg/m3、0.5~2.5μg/m3、0.1~0.5μg/m3、0.6~5.8μg/m3,不同水溶性金属盐最高值和最低值出现季节不同。水溶性金属盐没有明显的采暖期和非采暖期的差异,说明冬季采暖不是它们的主要来源。海盐和土壤源是北京大气PM10中Na+的主要来源,K+的主要来源包括秸秆燃烧和生物质排放,土壤源是Mg2+和Ca2+的重要来源。水溶性金属盐的日变化规律不同。降水对Na+、K+、Mg2+、Ca2+的清除分别为10%~70%、20%~80%、10%~77%、5%~80%。  相似文献   

17.
于2010年10月1日至11月30日在上海市城区对大气中颗粒物质量浓度及细粒子化学组分进行了在线连续观测,获得了秋季大气灰霾和沙尘等典型污染过程中颗粒物质量浓度和化学组成的变化特性.观测结果显示,在大气灰霾污染过程中PM10和PM2.5的日均最高浓度分别达到216~293 μg·m-3和130~204 μg·m-3,PM2.5/PM10的比值在65%以上,总的可溶性无机离子(TWSII)占PM2.5质量浓度的50%以上,有机碳(OC)和元素碳(EC)的总和占25%~30%.二次可溶性离子(SO42-, NO3-, NH4+)占TWSII的83.3%~87.5%,OC/EC的比值在5左右,表明在灰霾污染过程中二次组分对PM2.5的贡献较大;沙尘天气以粗粒子污染为主,TWSII、OC和EC分别仅占PM2.5质量浓度的27.2%、13.4%和2.0%,二次可溶性离子(SO42-, NO3-, NH4+)占TWSII的55.7%,Ca2+、Mg2+等地壳组分的比例较灰霾天气明显升高.研究结果还显示,SO42-和NO3-等二次离子组分的生成与颗粒物中硫与氮的氧化速率有关,在大气灰霾过程中硫转化率(SOR)和氮转化率(NOR)值较高,分别为0.24±0.10和0.15±0.06,说明SO2通过二次反应生成SO42-的能力较强,在污染的环境下高浓度的NO2更有利于向NO3-转化.  相似文献   

18.
天津近岸海域大气颗粒物无机组分季节变化及源析   总被引:4,自引:1,他引:3       下载免费PDF全文
2006~2007年在天津近岸海域分4个季节走航采集了不同粒径大气颗粒物样品,分析了其质量浓度以及元素、离子和碳等化学组成,并应用富集因子以及特征化合物比值对其来源进行了探讨.结果表明,天津近岸海域TSP,PM10和PM2.5的质量浓度分别为(294.98±3.95),(279.87±17.53),(205.50±38.13)μg/m3,且呈现出明显的季节变化,秋季颗粒物浓度最高,冬季次之,夏季最低. TSP、PM10和PM2.5中总元素浓度分别为48.76, 47.94,32.08 μg/m3. TSP中含量最高的离子是Na+, PM10和PM2.5中含量最高的离子是Cl-. 3种不同粒径中OC浓度秋、冬两季均明显高于春夏两季. Al/Fe的比值分析结果表明,春季TSP的主要来源为土壤尘,秋、冬季PM10和PM2.5主要受燃煤的影响. Cu、Zn和Pb的富集系数较高,其中Pb在冬季PM10中富集达到最高为741.3. NO3-/SO42-的变化范围为0.28~0.85,春夏季该比值较高于秋冬季,反映了该海域同时受燃煤与机动车污染的影响.OC/EC变化范围为2.13~5.58,表明该海域气溶胶中存在着大量二次有机碳.  相似文献   

19.
合肥市郊夏季PM10浓度及其与能见度的关系   总被引:3,自引:0,他引:3  
年8—9月在合肥市郊对ρ(PM10)进行了观测,并分析了其中9种水溶性离子(NO2-、Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)质量浓度. 结果表明:采样期间该地区ρ(PM10)日均值为78.9 μg/m3,9种水溶性离子的平均质量浓度为18.93 μg/m3,占ρ(PM10)的26.6%,表明水溶性组分是PM10的重要组成之一. SO42-、NO3-、NH4+和Ca2+是主要的阴、阳离子,日均质量浓度分别为8.14、4.81、3.46和1.33 μg/m3. 不同RH(相对湿度)下PM10对能见度的影响不同,RH小于80%时,二者呈显著的线性负相关〔R(相关系数)为-0.80〕;RH大于80%时,二者呈指数负相关(R为-0.48). 离子间相关性分析显示,PM10中水溶性离子的主要结合方式为(NH4)2SO4、NH4HSO4、NH4NO3、KCl及K2SO4. 采样期间ρ(NO3-)/ρ(SO42-)平均值为0.59,说明在该地区固定源对水溶性组分的贡献大于移动源. 另外,扬尘也是PM10重要来源之一.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号