首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
空气重污染应急措施对北京市PM2.5的削减效果评估   总被引:1,自引:0,他引:1  
利用嵌套网格空气质量模式系统(NAQPMS)模拟了2013年1月10~14日一次典型的大气严重污染过程,并利用同期气象和污染物浓度的小时观测数据验证了NAQPMS的模拟结果.敏感性试验结果表明,在重污染期间,当仅实施《北京市空气重污染应急预案(试行)》一级预警中机动车单双号限行措施时,可削减北京PM2.5小时平均浓度4%~10%;当仅实施工业限产减排30%的措施时,可削减北京PM2.5小时平均浓度1%~6%;当同时实施机动车单双号限行和工业限产减排30%的措施时,可削减北京平均PM2.5小时平均浓度6%~12%,并且PM2.5小时浓度与削减率的变化趋势呈反相关,即该措施对污染较轻时段PM2.5浓度削减率高于污染峰值时段;若京津冀地区两市一省同时实施机动车单双号限行和工业限产减排30%的措施时,可削减重污染期间北京小时平均PM2.5浓度20%~35%,且污染严重的区域和时段削减效果更加显著,空气质量可提升一个等级.研究结果表明,当北京发生重污染时,仅靠北京本地限排限产并不能有效减轻PM2.5浓度,若要有效控制北京重污染,应根据污染物区域输送特征,京津冀地区实施大气污染联防联控.  相似文献   

2.
长三角地区火电行业主要大气污染物排放估算   总被引:6,自引:3,他引:3  
丁青青  魏伟  沈群  孙予罕 《环境科学》2015,36(7):2389-2394
以2012年为基准年,利用排放因子法估算了长三角地区火电行业主要大气污染物(SO2、NOx、烟尘、PM10、PM2.5)排放.其中,SO2、NOx、烟尘、PM10、PM2.5的排放量分别为473 238、1 566 195、587 713、348 773、179 820 t.对于SO2和NOx,300 MW以上机组的贡献分别为85%和82%;烟尘、PM10和PM2.5方面,100 MW以下的机组贡献占比分别为81%、53%和40%.地区贡献方面,由大到小依次为江苏、浙江和上海.另通过对上海地区多家电厂不同等级机组污染排放数据进行统计计算,得出上海地区300 MW以上等级机组的污染物排放因子,对比分析可知,上海地区火电厂污染物排放因子水平总体较低.假设长三角地区火电行业同等级机组均与现在上海地区机组排放水平相当,则行业排放SO2可削减55.8%~65.3%,NOx可以削减50.5%~64.1%,烟尘可以削减3.4%~11.3%.若能提高较小等级机组的发电技术和污染控制水平,各污染物排放削减量可进一步提高.然而,根据长三角地区实际污染情况,应综合因素考虑火电行业削减排放,以促进区域空气质量不断改善.  相似文献   

3.
以2010年为基准年,利用COPERTⅣ模型计算了佛山市机动车尾气PM10及PM2.5的排放因子和排放量,评估了交通源车型组成及国标分布特征对PM2.5分担率的影响,建立了5大类车型的PM2.5及PM10排放量比值关系。2010年佛山市机动车的PM2.5及PM10直接排放量分别为1 953.03 t/a及2 422.60 t/a;PM2.5排放量最高的2类车型为重型柴油车与摩托车,分担率分别为61.5%及19.3%;在所有机动车中国0车具有最高PM2.5分担率,高达47.5%;不同车型PM2.5/PM10排放量之比亦不同,依次为:轻型柴油车0.850>重型柴油车0.847>摩托车0.811>轻型汽油车0.574>重型汽油车0.477。柴油车与摩托车为削减PM2.5直接排放的主要控制对象,尤其应重点淘汰国0、国Ⅰ及国Ⅱ柴油类黄标车,综合考虑道路状况的前提下可实施限摩政策。  相似文献   

4.
樊守彬  郭津津  李雪峰 《环境科学》2018,39(8):3571-3579
应用基于路网车流信息的情景分析方法,对北京城市副中心地区依据不同控制情景,以2015年为基准年建立机动车尾气排放清单.通过计算未来年路网车流信息和各情景下实际路网机动车污染物的排放清单,预测2020年和2025年的污染物排放变化.结果表明,未来10年北京城市副中心路网密度和机动车行驶里程持续增长,与基准情景相比,各控制情景对污染物排放量均有削减,新能源车推广情景对各污染物减排效果显著,且对NOx和PM的减排效果更好.外埠车限行情景对各污染物减排效果均较为显著,淘汰高排放车措施在短时间内削减效果显著,但长期削减效果较弱.综合情景对污染物的削减率达到最佳,机动车污染物CO、NOx、HC和PM排放量分别下降39.0%、58.7%、49.2%和55.5%.  相似文献   

5.
文章通过对PM2.5的基本组成、来源与影响因素的分析,构建中国PM2.5全过程管理体系,建立、完善PM2.5削减和控制长效机制,进而实现中国PM2.5管理。  相似文献   

6.
近年来,随着城市化建设进程的加速和环境保护工作的深入开展,城市环境空气质量的污染类型已由SO2与PM10混合型污染,逐步转变为以扬尘为主要污染物的PM10污染,通过对克山县区空气质量状况、PM10形成原因分析,提出控制或削减PM10污染的对策建议。  相似文献   

7.
为了研究未来北京市机动车排放控制措施的减排效果,本文基于情景分析法,以2010年为基准年,通过设置3类控制措施情景,估算2011~2020年不同情景下北京市机动车常规污染物排放量,并在基准情景基础上,估算污染物减排量,分析控制措施对不同类型机动车的减排贡献.结果表明,尽管未来北京市机动车保有量会有较大增长,实施机动车排放控制措施仍可取得显著的减排效果.单一措施中,淘汰高排放车减排量最大.其中,淘汰轻型客车可有效减少CO的排放,减排贡献率为89.4%;淘汰重型客车可对NOx、HC和PM10达到有效削减,其贡献率分别为65.5%、55.8%、93.4%.实施新的排放标准对重型柴油车的排放也有明显控制效果,且4种污染物都能得到有效削减.综合实施各种措施的效果最为显著,2020年对CO、NOx、HC、PM10的削减效果分别达到46.4%、42.1%、8.6%和50.6%.  相似文献   

8.
采用COPERTⅣ模型计算佛山市公交车、摩托车和小型客车排放因子,结合保有量、年平均行驶里程计算其排放量,对佛山市公交车出行环境效果及尾气削减潜力进行情景分析。结果表明:2011年佛山市公交车CO、VOC、NOx和PM的排放量为804.57、283.85、3 365.32和73.00 t。单人单次公交车出行CO和VOC的排放量较摩托车和小型客车低,但NOx则较高。公交车载客人数从17人上升至25、35、45人,单人单次出行每公里排放量分别下降32.00%、51.43%和57.50%。佛山市低排放标准的柴油公交车全部更换成国Ⅳ排放标准柴油车,CO、VOC、NOx和PM的年排放量分别削减611.66、151.6、1 231.18和58.39 t。EEV标准天然气公交车替代柴油公交车可减少NOx和PM的排放,但对VOC的削减并无优势。佛山市现有柴油公交车更换成EEV标准天然气公交车,CO、NOx和PM的年排放量分别削减293.71 t、2 086.87 t和70.34 t,但VOC的年排放量升高228.01 t。  相似文献   

9.
多模式模拟评估奥运赛事期间可吸入颗粒物减排效果   总被引:12,自引:5,他引:7  
以空气质量多模式系统为工具,分析奥运赛事期间可吸入颗粒物(PM10)浓度大幅减小特征,从气象场和排放源两方面研究PM10浓度大幅减小的主要原因.多模式系统由嵌套网格空气质量模式(NAQPMS)、通用空气质量多尺度模式(CMAQ)和复杂大气空气质量三维模式(CAMx)3个空气质量复合模型组成,并以中尺度气象模式(MM5)和稀疏矩阵排放处理模型(SMOKE)提供统一气象场及排放源.研究对比2006年8月、2008年8月两组气象条件下北京PM10浓度水平及模拟效果,结果表明奥运赛事期间PM10浓度大幅减小的主要原因不是气象因素,而是由于额外措施引起的PM10排放减少.同时采用多模式系统数值模拟反向评估,获得北京奥运赛事期间奥运控制及额外减排措施引起的PM10减排量,结果表明,奥运赛事期间所有额外控制措施对颗粒物浓度效果相当于在2008年8月气象条件下,削减大约200t.d-1的无组织PM10排放,相当于北京正常时期PM10排放的50%.  相似文献   

10.
利用Model-3/CMAQ及京津冀地区高分辨率排放源清单,选取文献[19]中污染峰值当天启动50%污染源削减方案的同时,进一步设置了3种污染源控制方案(峰值当天启动75%源削减;峰值日前1d、2d开始启动25%源削减),比较了峰值日前启动适量减排与峰值日当天启动大幅度减排的效果差异.结果表明:污染峰值当天启动50%、75%减排时,北京市PM2.5浓度下降率分布不均匀,高值区集中于PM2.5浓度高值区,减排后PM2.5浓度分布较减排前均匀.提前1~2d启动25%源削减时,峰值日北京市PM2.5浓度整体下降.城、郊PM2.5下降率均表现为当天减排50%小于提前1d开始减排25%;当天启动减排提高到75%时,城区PM2.5下降率大于提前2d启动25%减排,郊区表现为峰值前2d启动25%削减优于当天减排75%.将峰值前1d、2d启动25%减排分别与当天启动50%、75%减排时北京市峰值日PM2.5浓度下降率相减,北京市绝大部分区域下降率差值为正;峰值前1d、2d启动25%减排分别比峰值日启动50%、75%减排时北京市平均PM2.5多下降4.7μg/m3(6%)、2.9μg/m3(4%).综上所述,在污染峰值来临之前采取适量减排较污染当天才启动大幅度减排更有利于北京市整体空气质量达标.  相似文献   

11.
利用2013年1-12月重庆市北碚区国控点实时发布的颗粒物污染监测数据,对PM2.5和PM10的达标情况、变化趋势及其两者之间相关性进行了分析。研究表明:2013年北碚区PM10年均值为100.2μg·m-3,超过了新国标Ⅱ级标准,PM10日均值超标天数为57天,全年达标天数比例为84.4%;北碚区PM2.5年均值为67.9μg·m-3,超过了新国标Ⅱ级标准,PM2.5日均值超标天数为94天,全年达标天数比例为74.2%;PM10和PM2.5有明显的季变性特征,其中春季PM2.5与PM10的污染最重,污染日分别占全年的58.5%和56.1%。PM2.5占PM10比例较高,PM2.5/PM10平均值为66.6%。PM2.5与PM10回归线性较好,y=0.7900x-11.280,R2=0.930;PM2.5和PM10的Pearson相关系数为0.964;PM2.5与PM10日均值呈显著线性相关。  相似文献   

12.
分析了2015年重庆市黔江城区2个自动监测站点PM10,SO2,NO2,O3日均值和小时均值,结合同期气象因素,对污染物浓度与气象因素进行分析.表明,PM10、SO2、NO2和O3春季平均值呈显著差异,PM10超标6天,SO2,NO2,O3污染水平较低,未超标;PM10、SO2和NO2呈现早晚双峰型,O3呈典型单峰型;风速与SO2和NO2浓度呈负相关,与O3浓度则呈正相关关系,风速较小时,利于PM10浓度降低,当风速达到一定程度,会导致PM10浓度升高;污染物浓度和相对湿度呈明显负相关;降水对大气污染物有削减作用.  相似文献   

13.
近年来,我国的PM2.5污染形势日趋严峻,其来源和成因复杂,对人体和环境的影响非常显著,在此系统总结了国内外PM2.5的研究进展及其污染控制历程.PM2.5研究主要涉及PM2.5污染特征、排放清单、源解析以及对大气能见度和人体健康的影响等方面.在污染控制方面,美国经过治理,2010年的PM2.5年均质量浓度值相较2000年下降了3.6μg/m3,下降幅度达到27%;1990 ~ 2009年,欧洲经济区(EEA)32个地区的PM10排放总量削减了27%,PM2.5重要前体物SO2,NOx,VOC,NH3分别削减了80%,44%,55%,26%.相较之下,我国的PM2.5污染现状较为严峻,2010年各监测试点城市的PM2.5超标天数占全部监测天数的比例在1.9%~48.9%之间,超标状况较为严重.我国应该在建立排放清单、多污染物协同控制、空气质量分区管理、加强监测能力建设等方面开展PM2.5控制.  相似文献   

14.
北京奥运交通限行前后街道机动车污染的模拟   总被引:5,自引:3,他引:2  
汪婷  谢绍东 《环境科学》2010,31(3):566-572
为评估北京市街道的机动车污染状况及奥运期间的改善程度,利用OSPM模型模拟计算了2008年7月奥运交通限行前后北京街道大气中PM10、CO、NO2和O3的浓度,得到其在限行前的日均浓度值分别为146μg/m3、3.83 mg/m3、114.4μg/m3和4.71×10-9,限行后为112μg/m3、3.16 mg/m3、102.4μg/m3和5.31×10-9,削减率分别是23.4%、20.5%、10.5%和-12.5%.对污染物在限行前后的浓度变化和日变化趋势的研究发现,PM10浓度受交通限行影响削减最大;CO浓度的日变化趋势与机动车流量的变化最为类似;NO2在限行后的削减幅度有限,表明其浓度还受到除交通排放外的其他因素影响;O3浓度在限行期间有所上升,说明限行措施不能降低街道中大气O3浓度.另外,比较不同类型街道的计算结果,发现街道车型构成与几何形状对污染物浓度变化有影响.总之,北京市在实施交通管制前,街道中PM10、CO和NO2的日均浓度均接近或超过国家空气质量二级标准限值,机动车污染状况较为严重;交通限行可有效降低一次污染物的浓度,但二次污染物的浓度有可能升高.  相似文献   

15.
大气细颗粒物的污染特征及对人体健康的影响   总被引:19,自引:3,他引:16  
采集兰州市2005年1月1日至2007年12月31日的大气颗粒物(TSP、PM10、PM2.5、PM1.0),分析不同粒径颗粒物的污染特征及其与气象因素的相关关系,并采用时间序列半参数广义相加模型(GAM)分析了可吸入颗粒物与呼吸系统疾病和心脑血管疾病日入院人次的暴露-反应关系.结果显示,TSP和PM10的质量浓度在春季较高,PM2.5和PM1.0在冬季较高;气象因子与大气颗粒物有显著的相关关系;对于呼吸系统疾病来说,PM10、PM2.5和PM1.0每升高10μg·m-3或10粒子数·m-3,入院危险分别增加0.052%、0.604%和0.652%;对于心脑血管疾病来说,PM10、PM2.5和PM1.0每升高10μg·m-3或10粒子数·m-3入院危险分别增加0.046%、0.697%和0.935%.由此可见,兰州市不同粒径大气颗粒物均有不同程度的污染,PM10、PM2.5和PM1.0对呼吸系统疾病和心脑血管疾病入院人次均有一定影响,且PM10对呼吸系统疾病的影响较心脑血管疾病明显,而PM2.5和PM1.0则正好相反.  相似文献   

16.
北京市压缩天然气公交车的环境效果分析   总被引:3,自引:0,他引:3  
经过对北京市2007年公交车队的详细技术构成与实际运营情况的调研,发现北京市公交车队的主力车型为国三和国四车辆,应用修正的COPERTIV模型计算出北京市各技术水平的汽油、柴油和压缩天然气(CNG)公交车的排放因子.2007年北京市国三CNG公交车PM2.5和NOx单车排放因子分别比国三柴油车削减了97%和30%,而公交车队中排放控制最为严格的EEV天然气公交车的PM2.5和NOx单车排放因子分别比国四柴油公交车削减了93%和69%.但由于CNG公交车的CH4排放水平较高,导致CNG公交车的总碳氢化合物(THC)单车排放因子显著高于相近控制水平的柴油公交车.在单车排放水平的基础上建立了北京市公交车排放清单,2007年北京市公交车排放的CO、NMHC、THC、NOx和PM2.5分别为9051t、955t、1222t、8553t和161t.与没有CNG公交车的对照情景进行比较,在使用了CNG公交车后,2007年北京市公交车CO、NMHC、NOx和PM2.5排放总量分别削减了293t、62t、775t和33t,削减比例分别为3.1%、6.1%、8.3%和17.2%.2007年北京市通过在公交车队中使用CNG车辆共减少了柴油消耗量约5.0×104t,相当于北京市各行业柴油总消耗量的2.6%.2007年北京市公交车尾气排放的温室气体的CO2当量为8.3×105t,比不使用CNG车辆的情景略微增加了2.4%.  相似文献   

17.
北京市2009年8月大气颗粒物污染特征   总被引:11,自引:1,他引:10       下载免费PDF全文
为研究2008年8月北京奥运会1a之后北京市大气颗粒物的污染特征,于2009年8月对北京市大气颗粒物PM10、PM2.5样品进行采集,测量其质量浓度并对其中的水溶性离子组分进行分析.研究发现2009年8月北京市大气颗粒物PM10、PM2.5质量浓度日均值分别为176.9μg/m3和102.5μg/m3.PM10质量浓度比2008年观测值上升了180%,比2007年降低了10%; PM2.5质量浓度比2008年观测值上升了126%,比2007年上升了31%.水溶性离子是大气颗粒物的重要组分,分别占PM10和PM2.5质量浓度的43%和61%.对比发现,污染天气条件下PM2.5/PM10和NO3-/SO42-比值升高,移动源是北京地区主要的污染物来源.风向风速和降水等天气条件对颗粒物质量浓度有很大影响,其中0.5~1.0m/s的东南风条件下大气颗粒物污染最为严重.  相似文献   

18.
2013年大连市区PM10年均值为85μg/m3,同比升高28.8%,是近十年来PM10涨幅最大的一次。分析得出2013年PM10升高原因主要有:12013年气象条件较2012年不利于污染物扩散;22013年雾霾产生的PM10约占全年PM10总量的14%,同比上升11个百分点;3监测方法转变导致2013年PM10浓度升高7%左右;4本地污染源的影响。据此提出,大连市要完成PM10约束性指标,除了采取常规控制措施外,还需要从根本上改变能源结构,同时开展大气污染联防联控。  相似文献   

19.
为了初步调查柳州市空气中颗粒物PM10、PM2.5的污染水平,于2013年春、夏、秋、冬4季在柳州市的6个典型城市功能区进行数据采集。结果表明,柳州市PM10和PM2.5污染很严重,超标率分别为12.6%和35.1%,而且对人体健康危害更大的PM2.5占PM10的大部分,约为79.55%,应引起公众和相关职能部门的高度重视,且应在PM2.5问题上重点寻求突破。  相似文献   

20.
北京市区春夏PM2.5和PM10浓度变化特征研究   总被引:2,自引:0,他引:2  
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号