首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption equilibria and rates were characterized for a matrix of four aquifer sands and two slightly to moderately hydrophobic organic solutes (nitrobenzene and lindane), and the effects of sorption on the behavior of these solutes in saturated systems of the soils were determined. Experimental data were used to test and evaluate a variety of mathematical models for predicting contaminant fate and transport in groundwater systems.Observed equilibrium relationships between soil and solution phase solute concentrations were found to be described best by the nonlinear Freundlich isotherm model. It was further determined that the sorption process in the systems tested is rate controlled, requiring several days to approach equilibrium in completely mixed batch reactors. Subsequent modeling of solute transport in continuous flow soil column reactors was found to be most successful when rate-controlled models were used, the best results were obtained with a dual-resistance model incorporating the coupled mass transport steps of boundary-layer and intraparticle diffusion.  相似文献   

2.
In this paper, we present semi-analytical solutions for two-dimensional equations governing transport of Light Non-Aqueous Phase Liquids (LNAPL) in unconfined aquifers. The proposed model is based on sharp interface displacement and steady groundwater flow assumptions, where both the water–LNAPL interface and the LNAPL–air interface are represented as sharp interfaces. In the case of steady groundwater flow, these equations can be reduced to a two-dimensional nonlinear solute transport equation, with the LNAPL thickness in the free product lens being the primary unknown variable. The linearized form of this solute transport equation falls into the category of two-dimensional transport equation with time-dependent dispersion coefficients. This equation can be solved analytically for an infinite domain region. In this paper, the general form of the analytical solution for the transport equation, as well as the solutions for some specific cases are presented. To demonstrate the utility of the proposed solution, numerical results obtained for two example problems are discussed and presented comparatively with a finite-element solution and other more restrictive solutions available in the literature. Although the solutions discussed in this paper have some simplifying assumptions, such as sharp-interfaces between fluid phases, steady groundwater flow and homogeneous aquifer properties, the semi-analytical solutions presented in this study may be used effectively as bench mark solutions in evaluating LNAPL migration in the subsurface. These solutions are simple and cost effective to implement and may be used in the calibration of other more complex numerical solutions that can be found in the literature.  相似文献   

3.
We address advective transport of a solute traveling toward a single pumping well in a two-dimensional randomly heterogeneous aquifer. The two random variables of interest are the trajectory followed by an individual particle from the injection point to the well location and the particle travel time under steady-state conditions. Our main objective is to derive the predictors of trajectory and travel time and the associated uncertainty, in terms of their first two statistical moments (mean and variance). We consider a solute that undergoes mass transfer between a mobile and an immobile zone. Based on Lawrence et al. [Lawrence, A.E., Sánchez-Vila, X., Rubin, Y., 2002. Conditional moments of the breakthrough curves of kinetically sorbing solute in heterogeneous porous media using multirate mass transfer models for sorption and desorption. Water Resour. Res. 38 (11), 1248, doi:10.1029/2001WR001006.], travel time moments can be written in terms of those of a conservative solute times a deterministic quantity. Moreover, the moments of solute particles trajectory do not depend on mass transfer processes. The resulting mean and variance of travel time and trajectory for a conservative species can be written as functions of the first, second moments and cross-moments of trajectory and velocity components. The equations are developed from a consistent second order expansion in sigmaY (standard deviation of the natural logarithm of hydraulic conductivity). Our solution can be completely integrated with the moment equations of groundwater flow of Guadagnini and Neuman [Guadagnini, A., Neuman, S.P., 1999a. Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly non uniform domains 1. Theory and computational approach. Water Resour. Res. 35(10), 2999-3018.,Guadagnini, A., Neuman, S.P., 1999b. Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly non uniform domains 2. Computational examples. Water Resour. Res. 35(10), 3019-3039.], it is free of distributional assumptions regarding the log conductivity field, and formally includes conditioning. We present analytical expressions for the unconditional case by making use of the results of Riva et al. [Riva, M., Guadagnini, A., Neuman, S.P., Franzetti, S., 2001. Radial flow in a bounded randomly heterogeneous aquifer. Transport in Porous Media 45, 139-193.]. The quality of the solution is supported by numerical Monte Carlo simulations. Potential uses of this work include the determination of aquifer reclamation time by means of a single pumping well, and the demarcation of the region potentially affected by the presence of a contaminant in the proximity of a well, whenever the aquifer is very thin and Dupuit-Forchheimer assumption holds.  相似文献   

4.
Visual modflow是一个可以对三维地下水水流和溶质运移进行数值模拟评价的标准可视化专业软件.建立了砂箱物理实验模型来研究柴油在含水砂槽中的迁移特征.通过模型检验,各个监测时期观测值和预测值相关系数r值在0.564 ~0.669之间,证明这种建模方法是合理的和有效的.利用校正的模型对实验室含水砂槽中柴油运移特征进行模拟,发现所建模型可以较为准确地反映出含水砂槽中柴油污染物的分布特征,拟合、验证和预测结果显示该模型可作为地下水管理的有效工具,这为深入研究柴油污染地下水提供理论依据.  相似文献   

5.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

6.
Applied tracer tests provide a means to estimate aquifer parameters in fractured rock. The traditional approach to analysing these tests has been using a single fracture model to find the parameter values that generate the best fit to the measured breakthrough curve. In many cases, the ultimate aim is to predict solute transport under the natural gradient. Usually, no confidence limits are placed on parameter values and the impact of parameter errors on predictions of solute transport is not discussed. The assumption inherent in this approach is that the parameters determined under forced conditions will enable prediction of solute transport under the natural gradient. This paper considers the parameter and prediction uncertainty that might arise from analysis of breakthrough curves obtained from forced gradient applied tracer tests. By adding noise to an exact solution for transport in a single fracture in a porous matrix we create multiple realisations of an initial breakthrough curve. A least squares fitting routine is used to obtain a fit to each realisation, yielding a range of parameter values rather than a single set of absolute values. The suite of parameters is then used to make predictions of solute transport under lower hydraulic gradients and the uncertainty of estimated parameters and subsequent predictions of solute transport is compared. The results of this study show that predictions of breakthrough curve characteristics (first inflection point time, peak arrival time and peak concentration) for groundwater flow speeds with orders of magnitude smaller than that at which a test is conducted can sometimes be determined even more accurately than the fracture and matrix parameters.  相似文献   

7.
Multiple factors may affect the scale-up of laboratory multi-tracer injection into structured porous media to the field. Under transient flow conditions and with multiscale heterogeneities in the field, previous attempts to scale-up laboratory experiments have not answered definitely the questions about the governing mechanisms and the spatial extent of the influence of small-scale mass transfer processes such as matrix diffusion. The objective of this research is to investigate the effects of multiscale heterogeneity, mechanistic and site model conceptualization, and source term density effect on elucidating and interpreting tracer movement in the field. Tracer release and monitoring information previously obtained in a field campaign of multiple, conservative tracer injection under natural hydraulic gradients at a low-level waste disposal site in eastern Tennessee, United States, is used for the research. A suite of two-pore-domain, or fracture-matrix, groundwater flow and transport models are calibrated and used to conduct model parameter and prediction uncertainty analyses. These efforts are facilitated by a novel nested Latin-hypercube sampling technique. Our results verify, at field scale, a multiple-pore-domain, multiscale mechanistic conceptual model that was used previously to interpret only laboratory observations. The results also suggest that, integrated over the entire field site, mass flux rates attributable to small-scale mass transfer are comparable to that of field-scale solute transport. The uncertainty analyses show that fracture spacing is the most important model parameter and model prediction uncertainty is relatively higher at the interface between the preferred flow path and its parent bedrock. The comparisons of site conceptual models indicate that the effect of matrix diffusion may be confined to the immediate neighborhood of the preferential flow path. Finally, because the relatively large amount of tracer needed for field studies, it is likely that source term density effect may exaggerate or obscure the effect of matrix diffusion on the movement of tracers from the preferred flow path into the bedrock.  相似文献   

8.
Weldon Spring is consistently enriched in 18 O relative to other karst springs in east-central Missouri and western Illinois, suggesting an evaporated source component. Regional potentiometric head maps of the shallow aquifer suggest that Prairie Lake, an artificial lake built between 1954 and 1982, could represent this component. Isotopic, biological and chemical tracing of the spring conclusively verify the hypothesis that this lake has impacted Weldon Spring. Mixing calculations indicate that Weldon Spring is now comprised of approximately 80% lake water and 20% groundwater. Recent measurements indicate that the discharge rate of the spring is now approximately 10 times the rate prior to the construction of the lake, confirming the augmentation of flow by a new source. Analysis of the isotopic trends indicates that the subsurface travel time is short, and suggests that the conduits connecting the lake and the spring may be progressively enlarging.  相似文献   

9.
A natural gradient emplaced-source (ES) controlled field experiment was conducted at the Borden aquifer research site, Ontario, to study the transport of dissolved plumes emanating from residual dense nonaqueous-phase liquid (DNAPL) source zones. The specific objective of the work presented here is to determine the effects of solute and co-solute concentrations on sorption and retardation of dissolved chlorinated solvent-contaminant plumes. The ES field experiment comprised a controlled emplacement of a residual multicomponent DNAPL below the groundwater table and intensive monitoring of dissolved-phase plumes of trichloromethane (TCM), trichloroethylene (TCE), and perchloroethylene (PCE) plumes continuously generated in the aquifer down gradient from gradual source dissolution. Estimates of plume retardation (and dispersion) were obtained from 3-D numerical simulations that incorporated transient source input and flow regimes monitored during the test. PCE, the most retarded solute, surprisingly exhibited a retardation factor approximately 3 times lower than observed in a previous Borden tracer test by Mackay et al. [Water Resour. Res. 22 (1986) 2017] conducted approximately 150 m away. Also, an absence of temporal trend in PCE retardation contrasted with the previous Borden test. Supporting laboratory studies on ES site core indicated that sorption was nonlinear and competitive, i.e. reduced sorption of PCE was observed in the presence of TCE. Consideration of the effects of relatively high co-solute (TCE) concentration (competitive sorption) in addition to PCE concentration effects (nonlinear sorption) was necessary to yield laboratory-based PCE retardation estimates consistent with the field plume values. Concentration- and co-solute-based sorption and retardation analysis was also applied to the previous low-concentration pulse injection test of Mackay et al. [Water Resour. Res. 22 (1986) 2017] and was able to successfully predict the temporal field retardation trends observed in that test. While it is acknowledged that other "nonideal transport" effects may contribute, our analysis predicts differences in the PCE retardation magnitude and trend between the two experiments that are consistent with field observations based on the marked solute concentration differences that resulted from contrasting source conditions. Solute and co-solute concentration effects have heretofore received little attention, but may have wide significance in aquifers contaminated by point-source pollutants because many plumes contain mixed solutes over wide concentration ranges in strata that are likely subject to nonlinear sorption.  相似文献   

10.
Weldon Spring is consistently enriched in18O relative to other karst springs in east-central Missouri and western Illinois, suggesting an evaporated source component. Regional potentiometric head maps of the shallow aquifer suggest that Prairie Lake, an artificial lake built between 1954 and 1982, could represent this component. Isotopic, biological and chemical tracing of the spring conclusively verify the hypothesis that this lake has impacted Weldon Spring. Mixing calculations indicate that Weldon Spring is now comprised of approximately 80% lake water and 20% groundwater. Recent measurements indicate that the discharge rate of the spring is now approximately 10 times the rate prior to the construction of the lake, confirming the augmentation of flow by a new source. Analysis of the isotopic trends indicates that the subsurface travel time is short, and suggests that the conduits connecting the lake and the spring may be progressively enlarging.  相似文献   

11.
The one-dimensional pesticide fate model MACRO was loose-linked to the three-dimensional discrete fracture/matrix diffusion model FRAC3DVS to describe transport of the pesticide mecoprop in a fractured moraine till and local sand aquifer (5-5.5 m depth) overlying a regional limestone aquifer (16 m depth) at Havdrup, Denmark. Alternative approaches to describe the upper boundary in the groundwater model were examined. Field-scale simulations were run to compare a uniform upper boundary condition with a spatially variable upper boundary derived from Monte-Carlo simulations with MACRO. Plot-scale simulations were run to investigate the influence of the temporal resolution of the upper boundary conditions for fluxes in the groundwater model and the effects of different assumptions concerning the macropore/fracture connectivity between the two models. The influence of within-field variability of leaching on simulated mecoprop concentrations in the local aquifer was relatively small. A fully transient simulation with FRAC3DVS gave 20 times larger leaching to the regional aquifer compared to the case with steady-state water flow, assuming full connectivity with respect to macropores/fractures across the boundary between the two models. For fully transient simulations 'disconnecting' the macropores/fractures at the interface between the two models reduced leaching by a factor 24. A fully connected, transient simulation with FRAC3DVS, with spatially uniform upper boundary fluxes derived from a MACRO simulation with 'effective' parameters is therefore recommended for assessing leaching risks to the regional aquifer, at this, and similar sites.  相似文献   

12.
Groundwater remediation evaluations typically include cleanup time projections. Current batch flushing-rate equations and analytical models often used to estimate groundwater cleanup rates typically underestimate cleanup times, with a major factor the flawed assumption of aquifer homogeneity. Numerical modelling of groundwater flow and contaminant transport is a time-intensive and costly alternative. An analytical modelling approach has been developed to quickly and cost effectively approximate realistic contaminant cleanup rates, factoring aquifer heterogeneity into the process. The mathematical relationships predict residual dissolved concentrations and average pumped concentrations over time, and also the time required to meet a concentration standard.  相似文献   

13.
This paper presents the results of a detailed field investigation that was performed for studying groundwater recharge processes and solute downward migration mechanisms prevailing in the unsaturated zone overlying a chalk aquifer in Belgium. Various laboratory measurements were performed on core samples collected during the drilling of boreholes in the experimental site. In the field, experiments consisted of well logging, infiltration tests in the unsaturated zone, pumping tests in the saturated zone and tracer tests in both the saturated and unsaturated zones. Results show that gravitational flows govern groundwater recharge and solute migration mechanisms in the unsaturated zone. In the variably saturated chalk, the migration and retardation of solutes is strongly influenced by recharge conditions. Under intense injection conditions, solutes migrate at high speed along the partially saturated fissures, downward to the saturated zone. At the same time, they are temporarily retarded in the almost immobile water located in the chalk matrix. Under normal recharge conditions, fissures are inactive and solutes migrate slowly through the chalk matrix. Results also show that concentration dynamics in the saturated zone are related to fluctuations of groundwater levels in the aquifer. A conceptual model is proposed to explain the hydrodispersive behaviour of the variably saturated chalk. Finally, the vulnerability of the chalk to contamination issues occurring at the land surface is discussed.  相似文献   

14.
Three projects involving point velocity probes (PVPs) illustrate the advantages of direct groundwater velocity measurements. In the first, a glacial till and outwash aquifer was characterized using conventional methods and multilevel PVPs for designing a bioremediation program. The PVPs revealed a highly conductive zone that dominated the transport of injected substances. These findings were later confirmed with a natural gradient tracer test. In the second, PVPs were used to map a groundwater velocity field around a dipole recirculation well. The PVPs showed higher than expected velocities near the well, assuming homogeneity in the aquifer, leading to improved representations of the aquifer heterogeneity in a 3D flow model, and an improved match between the modelled and experimental tracer breakthrough curves. In the third study, PVPs detected subtle changes in aquifer permeability downgradient of a biostimulation experiment. The changes were apparently reversible once the oxygen source was depleted, but in locations where the oxygen source lingered, velocities remained low. PVPs can be a useful addition to the hydrogeologist's toolbox, because they can be constructed inexpensively, they provide data in support of models, and they can provide information on flow in unprecedented detail.  相似文献   

15.
Final disposal of high-level radioactive waste in deep repositories located in fractured granite formations is being considered by several countries. The assessment of the safety of such repositories requires using numerical models of groundwater flow, solute transport and chemical processes. These models are being developed from data and knowledge gained from in situ experiments such as the Redox Zone Experiment carried out at the underground laboratory of Äspö in Sweden. This experiment aimed at evaluating the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Most chemical species showed dilution trends except for bicarbonate and sulphate which unexpectedly increased with time. Molinero and Samper [Molinero, J. and Samper, J. Groundwater flow and solute transport in fracture zones: an improved model for a large-scale field experiment at Äspö (Sweden). J. Hydraul. Res., 42, Extra Issue, 157–172] presented a two-dimensional water flow and solute transport finite element model which reproduced measured drawdowns and dilution curves of conservative species. Here we extend their model by using a reactive transport which accounts for aqueous complexation, acid–base, redox processes, dissolution–precipitation of calcite, quartz, hematite and pyrite, and cation exchange between Na+ and Ca2+. The model provides field-scale estimates of cation exchange capacity of the fracture zone and redox potential of groundwater recharge. It serves also to identify the mineral phases controlling the solubility of iron. In addition, the model is useful to test the relevance of several geochemical processes. Model results rule out calcite dissolution as the process causing the increase in bicarbonate concentration and reject the following possible sources of sulphate: (1) pyrite dissolution, (2) leaching of alkaline sulphate-rich waters from a nearby rock landfill and (3) dissolution of iron monosulphides contained in Baltic seafloor sediments. Based on these results, microbially mediated processes are postulated as the most likely hypothesis to explain the measured increase of dissolved bicarbonates and sulphates after tunnel construction.  相似文献   

16.
17.
This study develops a modeling approach for simulating and evaluating entrapped light nonaqueous-phase liquid (light NAPL-LNAPL) dissolution and transport of the solute in a fractured permeable aquifer (FPA). The term FPA refers to an aquifer made of porous blocks of high permeability that embed fractures. The fracture network is part of the domain characterized by high permeability and negligible storage. Previous studies show that sandstone aquifers often represent FPAs. The basic model developed in this study is a two-dimensional (2-D) model of permeable blocks that embed oblique equidistant fractures with constant aperture and orientation. According to this model, two major parameters govern NAPL dissolution and transport of the solute. These parameters are: 1) the dimensionless interphase mass transfer coefficient, K(f0), and 2) the mobility number, N(M0). These parameters represent measures of heterogeneity affecting flow, NAPL dissolution, and transport of the solute in the domain. The parameter K(f0) refers to the rate at which organic mass is transferred from the NAPL into the water phase. The parameter N(M0) represents the ratio of flow through the porous blocks to flow through the fracture network in regions free of entrapped NAPL. It also provides a measure of groundwater flow bypassing regions contaminated by entrapped NAPL. In regions contaminated by entrapped NAPL our simulations have often indicated very low permeability of the porous blocks, enabling a significant increase of the fracture flow at the expense of the permeable block flow. Two types of constitutive relationships also affect the rate of FPA cleanup: 1) the relationship between the saturation of the entrapped NAPL and the permeability of the porous blocks, and 2) the relationships representing effects of the entrapped NAPL saturation and the permeable block flow velocity on rates of interphase mass transfer. This study provides basic tools for evaluating the characteristics of pump-and-treat cleanup of FPAs by referring to sets of parameters and constitutive relationships typical of FPAs. The numerical simulations carried out in this study show that at high initial saturation of the entrapped NAPL, during initial stages of the FPA cleanup the contaminant concentration increases, but later it decreases. This phenomenon originates from significant groundwater bypassing the NAPL entrapped in the permeable blocks via the fracture network.  相似文献   

18.
In situ flushing groundwater remediation technologies, such as cosolvent flushing, rely on the stability of the interface between the resident and displacing fluids for efficient removal of contaminants. Contrasts in density and viscosity between the resident and displacing fluids can adversely affect the stability of the displacement front. Petroleum engineers have developed techniques to describe these types of processes; however, their findings do not necessarily translate directly to aquifer remediation. The purpose of this laboratory study was to investigate how density and viscosity contrasts affected cosolvent displacements in unconfined porous media characterized by the presence of a capillary fringe. Two-dimensional flow laboratory experiments, which were partially scaled to a cosolvent flushing field experiment, were conducted to determine potential implications of flow instabilities in homogeneous sand packs. Numerical simulations were also conducted to investigate the differential impact of fluid property contrasts in unconfined and confined systems. The results from these experiments and simulations indicated that the presence of a capillary fringe was an important factor in the displacement efficiency. Buoyant forces can act to carry a lighter-than-water cosolvent preferentially into the capillary fringe during displacement of the resident groundwater. During subsequent water flooding, buoyancy forces can act to effectively trap the cosolvent in the capillary fringe, contributing to the inefficient removal of cosolvent from the aquifer.  相似文献   

19.
The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272microgm(-2)d(-1) MCB and 71microgm(-2)d(-1) DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream.  相似文献   

20.
Methods to characterize the organic solute sorption distribution coefficient, organic carbon content, and specific surface area of aquifer solids from the site of a field experiment on solute transport in groundwater were refined for application to small subsamples of 10-cm depth increments taken from 5-cm diameter cores. Initial results indicate that the average sorption characteristics of the Borden aquifer do not vary appreciably along the trajectory of the solute plumes. However, the sorption distribution coefficient of tetrachloroethylene varied over nearly an order of magnitude among 10-cm depth increments in one core sample. Preliminary evidence suggests that the sorption distribution coefficients for four halogenated organic solutes vary proportionally among core strata. However, the distribution coefficients for sorption of tetrachloroethylene on various depth increments are not well correlated with either organic carbon content or specific surface area, suggesting that as yet unidentified mineral phases may play a significant role in sorption of such solutes by the sandy aquifer solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号