首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wörmer L  Cirés S  Quesada A 《Chemosphere》2011,82(8):1141-1146
Sedimentation processes of microcystins (MCs), cyanobacterial toxins, were studied in three reservoirs located in Central Spain in which the cyanobacterial community was dominated by the genus Microcystis. MCs were detected in the sediment traps deployed in all reservoirs. In Santillana reservoir, MCs were identified in sediment traps even though they could not be found in the pelagial samples. In the other reservoirs studied, sedimentation rates for MC-containing particles during the bloom period ranged from 0.43 to 2.53 mg m−2 d−1. Interestingly, this very high sedimentation of toxic biomass is not exclusively related to decaying blooms or autumnal sedimentation due to a drop in water temperature. Instead, it seems that MC-containing colonies may be settling constantly during the bloom period and we were able to estimate that during such a Microcystis dominated bloom, around 4.5% of pelagial MCs may be involved in sedimentation. Further, these settling colonies seem to maintain good cell integrity and MCs seem not to be excreted massively. A certain loss of toxin content along the vertical settling may be attributed to minor losses due to cell lysis or to variations in MC cell quota explained by reduced production or internal consumption. Our results for the first time establish specific settling rates for MC-containing particles in freshwaters and definitely identify sedimentation as a major destination for these toxins. These data may contribute to improve managing strategies concerning risks associated with MCs.  相似文献   

2.
Gan HM  Shahir S  Ibrahim Z  Yahya A 《Chemosphere》2011,82(4):507-513
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μmax, Ks and Ki were determined to be 0.13 h−1, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.  相似文献   

3.
Huang L  Lu D  Diao J  Zhou Z 《Chemosphere》2012,87(1):7-11
Enantioselectivity in ecotoxicity and biodegradation of chiral pesticide benalaxyl to freshwater algae Scenedesmus obliquus was studied. The 96 h-EC50 values of rac-, R-(−)-, S-(+)-benalaxyl were 2.893, 3.867, and 8.441 mg L−1, respectively. Therefore, the acute toxicities of benalaxyl enantiomers were enantioselective. In addition, the pigments chlorophyll a and chlorophyll b, antioxidant enzyme activities catalase (CAT) and superoxide dismutase (SOD) as well as lipid peroxide malondialdehyde (MDA) were determined to evaluate the different toxic effects. Chlorophyll a was induced by S-(+)-benalaxyl but inhibited by R-(−)-benalaxyl at 1 mg L−1. Chlorophyll b were both induced at 1 mg L−1, but S-(+)-form was fourfold higher than R-(−)-form. S-(+)-benalaxyl inhibited more CAT activities at 3 mg L−1 and 5 mg L−1, induced less SOD activity and MDA content at 5 mg L−1 than R-(−)-benalaxyl. Based on these data, enantioselectivity occurred in anti-oxidative stress when S. obliquus response to benalaxyl. In the biodegradation experiment, the half-lives of S-(+)-benalaxyl and R-(−)-benalaxyl were 4.07 d and 5.04 d, respectively, resulting in relative enrichment of the R-(−)-form. These results showed that toxic effects and biodegradation of benalaxyl in S. obliquus were enantioselective, and such enantiomeric differences must be taken into consideration in pesticide risk.  相似文献   

4.
主要针对筛选的高效降解微囊藻毒素(microcystins,MCs)的食酸戴尔福特菌USTB-04(Delftia acidovorans,DA菌)的培养方法进行了研究.结果表明,以葡萄糖、甘油和乙醇作为惟一碳源时,与氯化铵和尿素相比,酵母粉是支持DA菌生长的较好氮源.在以酵母粉作为惟一氮源时,与甘油和乙醇相比,葡萄糖是提高DA菌生长速度的较好碳源.进一步研究显示,以葡萄糖和酵母粉作为碳源和氮源时,可以支持DA菌的快速稳定生长,但在以甘油和酵母粉作为碳源和氮源时.培养出的DA菌降解MCs的比活性最高.此研究在培养高细胞浓度DA菌作为生物催化剂用于饮用水源中的MCs去除方面具有重要意义.  相似文献   

5.
We conducted acute toxicity tests and sediment toxicity tests for copper pyrithione (CuPT) and a metal pyrithione degradation product, 2,2′-dipyridyldisulfide [(PS)2], using a marine polychaete Perinereis nuntia. The acute toxicity tests yielded 14-d LC50 concentrations for CuPT and (PS)2 of 0.06 mg L−1 and 7.9 mg L−1, respectively. Sediment toxicity tests resulted in 14-d LC50 concentrations for CuPT and (PS)2 of 1.1 mg kg−1 dry wt. and 14 mg kg−1 dry wt., respectively. In addition to mortality, sediment avoidance behavior and decreases in animal growth rate were observed; growth rate was the most susceptible endpoint in the sediment toxicity tests of both toxicants. Thus, we propose lowest observed effect concentrations of 0.3 mg kg−1 dry wt. and 0.2 mg kg−1 dry wt. for CuPT and (PS)2, respectively, and no observed effect concentrations of 0.1 mg kg−1 dry wt. for both CuPT and (PS)2. The difference in the toxicity values between CuPT and (PS)2 observed in the acute toxicity test was greater than the difference in these values in the sediment toxicity test, and we attribute this to (PS)2 being more hydrophilic than CuPT. In addition to the toxicity tests, we analyzed conjugation activity of several polychaete enzymes to the toxicants and marked activity of palmitoyl coenzyme-A:biocides acyltransferase and UDP-glucuronosyl transferase was observed.  相似文献   

6.
Zhou Q  Diao C  Sun Y  Zhou J 《Chemosphere》2012,86(10):994-1000
The growth, photosynthesis rate, and ultrastructure of Mirabilis jalapa L. as a newly-found remediation species under stress of nitrobenzene (NB) and its uptake and removal of NB by the plants were investigated. The results showed that M. jalapa plants could endure contaminated soils by lower than 10.0 mg NB kg−1 because there was no decrease in the total length of the plant roots, the maximum length of the hypocotyle, the length of the first seminal root, the height of the shoots and the dry biomass of the seedlings as well as the photosynthesis rate of the plants compared with those in the control. In particular, the growth of the plants could be significantly (< 0.01) enhanced by 0.1 mg NB kg−1 under unautoclaved and autoclaved soils. Ultrastructural observations on leaf cells of the plants found that these cells had smooth, clean and continuous cell membranes and cell walls, indicating that there was no obvious damage by NB in comparison with those in the control. Although the absorption of NB in shoots and roots of M. jalapa was weak, plant-promoted biodegradation of NB was considerable and the dominant contribution in the removal of NB from contaminated soils, suggesting the feasibility of M. jalapa applied to phytoremediation of NB contaminated soils.  相似文献   

7.
Ho L  Tang T  Monis PT  Hoefel D 《Chemosphere》2012,87(10):1149-1154
The fate of multiple cyanobacterial metabolites was assessed in two Australian source waters. The saxitoxins were the only metabolites shown to be non-biodegradable in Myponga Reservoir water, while microcystin-LR (MCLR) and geosmin were biodegradable in this water source. Likewise, cylindrospermopsin (CYN) was shown to be biodegradable in River Murray water. The order of ease of biodegradability followed the trend: MCLR > CYN > geosmin > saxitoxins. Biodegradation of the metabolites was affected by temperature and seasonal variations with more rapid degradation at 24 °C and during autumn compared with 14 °C and during winter. A microcystin-degrading bacterium was isolated and shown to degrade four microcystin variants within 4 h. This bacterium, designated as TT25, was shown to be 99% similar to a Sphingopyxis sp. based on a 16S rRNA gene fragment. Isolate TT25 was shown to contain a homologue of the mlrA gene; the sequence of which was 99% similar to that of a previously reported microcystin-degrader. Furthermore, isolate TT25 could degrade the microcystins in the presence of copper sulphate (0.5 mg L−1 as Cu2+) which is advantageous for water authorities dosing such algicides into water bodies to control cyanobacterial blooms.  相似文献   

8.
To highlight the effects of a variety of chlorophenols (CP) in relation to the response of an indigenous bacterial community, an agricultural Mediterranean calcareous soil has been studied in microcosms incubated under controlled laboratory conditions. Soil samples were artificially polluted with 2-monochlorophenol (MCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP), at concentrations ranging from 0.1 up to 5000 mg kg−1. Both activity and composition of the microbial community were assessed during several weeks, respectively, by respirometric methods and PCR-DGGE analysis of extracted DNA and RNA. Significant decreases in soil respirometric values and changes in the bacterial community composition were observed at concentrations above 1000 mg kg−1 MCP and TCP, and above 100 mg kg−1 PCP. However, the persistence of several active bacterial populations in soil microcosms contaminated with high concentration of CP, as indicated by DGGE fingerprints, suggested the capacity of these native bacteria to survive in the presence of the pollutants, even without a previous adaptation or contact with them.The isolation of potential CP degraders was attempted by culture plating from microcosms incubated with high CP concentrations. Twenty-three different isolates were screened for their resistance to TCP and PCP. The most resistant isolates were identified as Kocuria palustris, Lysobacter gummosus, Bacillus sp. and Pseudomonas putida, according to 16S rRNA gene homology. In addition, these four isolates also showed the capacity to reduce the concentration of TCP and PCP from 15% to 30% after 5 d of incubation in laboratory assays (initial pollutant concentration of 50 mg L−1). Isolate ITP29, which could be a novel species of Bacillus, has been revealed as the first known member in this bacterial group with potential for CP bioremediation applications, usually wide-spread in the soil natural communities, which has not been reported to date as a CP degrader.  相似文献   

9.
The pot-culture experiment and field studies were conducted to screen out and identify cadmium (Cd) excluders from 40 Chinese cabbage genotypes for food safety. The results of the pot-culture experiment indicated that the shoot Cd concentrations under three treatments (1.0, 2.5 and 5.0 mg Cd kg−1 Soil) varied significantly (p < 0.05), with average values of 0.70, 3.07 and 5.83 mg kg−1, respectively. The Cd concentrations in 12 cabbage genotypes were lower than 0.50 mg kg−1. The enrichment factors (EFs) and translocation factors (TFs) in 8 cabbage genotypes were lower than 1.0. The field studies further identified Lvxing 70 as a Cd-excluder genotype (CEG), which is suitable to be planted in low Cd-contaminated soils (Cd concentration should be lower than 1.25 mg kg−1) for food safety.  相似文献   

10.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   

11.
Four microbial species (Kocuria rhizophila, Microbacterium resistens, Staphylococcus equorum and Staphylococcus cohnii subspecies urealyticus) were isolated from the rhizospheric zone of selected plants growing in a lindane contaminated environment and acclimatized in lindane spiked media (5-100 μg mL−1). The isolated species were inoculated with soil containing 5, 50 and 100 mg kg−1 of lindane and incubated at room temperature. Soil samples were collected periodically to evaluate the microbial dissipation kinetics, dissipation rate, residual lindane concentration and microbial biomass carbon (MBC). There was a marked difference (p < 0.05) in the MBC content and lindane dissipation rate of microbial isolates cultured in three different lindane concentrations. Further, the dissipation rate tended to decrease with increasing lindane concentrations. After 45 d, the residual lindane concentrations in three different spiked soils were reduced to 0%, 41% and 33%, respectively. Among the four species, S. cohnii subspecies urealyticus exhibited maximum dissipation (41.65 mg kg−1) and can be exploited for the in situ remediation of low to medium level lindane contaminated soils.  相似文献   

12.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

13.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

14.
In this study, different concentrations of transfluthrin and metofluthrin have been assayed for genotoxicity by using the Wing Spot Test on Drosophila melanogaster. Standard cross was used in the experiment. Third-instar larvae that were trans-heterozygous for the two genetic markers mwh and flr3 were treated at different concentrations (0.0103 mg mL−1, 0.103 mg mL−1 for transfluthrin and 6 μg mL−1, 60 μg mL−1 for metofluthrin) of the test compounds. Feeding ended with pupation of the surviving larvae and the genetic changes induced in somatic cells of the wing’s imaginal discs lead to the formation of mutant clones on the wing blade. Results indicated that two experimental concentrations of transfluthrin and 60 μg mL−1 metofluthrin showed mutagenic and recombinogenic effects in both the marker-heterozygous (MH) flies and the balancer-heterozygous (BH) flies.  相似文献   

15.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   

16.
Enchytraeus crypticus as model species in soil ecotoxicology   总被引:1,自引:0,他引:1  
Enchytraeids are ecologically relevant soil organisms, due to their activity in decomposition and bioturbation in many soil types worldwide. The enchytraeid reproduction test (ERT) guidelines ISO 16387 and OECD 220 are exclusive to the genus Enchytraeus and recommend using the species E. albidus with a 6-week test period. The suggested alternative, E. crypticus has a shorter generation time which may enable the ERT to be twice as fast. To confirm the suitability of a 3-week test period for E. crypticus, the toxicity of five chemicals, with distinct properties and modes of action, was assessed in LUFA 2.2 soil. In all controls the validity criteria were met, as survival of E. crypticus was above 92% and more than 772 juveniles were produced. The good performance supports its appropriateness as model species. Reproduction was more sensitive than survival, with only cadmium and 3,5-dichloroaniline causing significant lethal effects in the tested concentration ranges. The effect concentration causing 50% reduction in the number of juveniles (EC50) was 35 mg kg−1 for cadmium, <1.0 mg kg−1 for carbendazim, 145 mg kg−1 for phenanthrene, 275 mg kg−1 for pentachloroaniline and 102 mg kg−1 for 3,5-dichloroaniline. To evaluate the sensitivity of E. crypticus, the present results were compared to literature data for E. albidus. In conclusion, E. crypticus is a suitable model species in soil ecotoxicology, with advantages such as good control performance and speed, leading to a reliable and faster ERT.  相似文献   

17.
The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg−1 and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg−1 Cr and 1000 mg kg−1 Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.  相似文献   

18.
Ong PT  Yong JC  Chin KY  Hii YS 《Chemosphere》2011,84(5):578-584
Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg−1 anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg−1. At 100 mg kg−1 anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k1) and depuration rate constant (k2) of anthracene in P. monodon were 1.15 × 10−3, 6.80 × 10−4 d−1 and 6.28 × 10−1 d−1, respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.  相似文献   

19.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

20.
The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mobilizing high concentrations of Cd, Zn and Pb in soils. P. myrsinacearum RC6b exhibited a high degree of resistance to Cd (350 mg L−1), Zn (1000 mg L−1) and Pb (1200 mg L−1). Furthermore, P. myrsinacearum RC6b showed multiple plant growth beneficial features including the production of 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophore and solubilization of insoluble phosphate. Inoculation of P. myrsinacearum RC6b significantly increased S. plumbizincicola growth and organ metal concentrations except Pb, which concentration was lower in root and stem of inoculated plants. The results suggest that the metal mobilizing P. myrsinacearum RC6b could be used as an effective inoculant for the improvement of phytoremediation in multi-metal polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号