首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
砷(Ⅲ)离子印迹聚合物的制备及吸附性能研究   总被引:1,自引:0,他引:1  
以磁性氧化石墨烯为载体,砷离子(As(Ⅲ))为模板离子,3-巯基丙基三甲氧基硅烷(MPTS)为功能单体,正硅酸乙酯(TEOS)为交联剂合成了As(Ⅲ)离子印迹磁性氧化石墨烯纳米材料(MGO-IIP),并使用扫描电子显微镜、傅里叶变换红外光谱(FTIR)、X-射线衍射仪(XRD)和振动样品磁强计对合成材料进行了表征.同时,考察了MGO-IIP对As(Ⅲ)的吸附特性.结果表明:318 K下MGO-IIP对As(Ⅲ)的最大吸附量为148.1 mg·g~(-1),仅20 min即可达到吸附平衡,印迹因子为2.35;吸附过程服从Langmuir模型和准二级动力学模型,说明是自发的吸热过程;在其他干扰离子存在的情况下,MGO-IIP对As(Ⅲ)仍然具有良好的吸附效果,且能够重复使用4次,在含砷废水处理中具有应用价值.MGO-IIP材料对As(Ⅲ)的吸附机制为表面络合作用及物理吸附.  相似文献   

2.
多功能高铁酸盐去除饮用水中砷的研究   总被引:22,自引:4,他引:18  
利用高铁酸盐的氧化絮凝双重水处理功能,取代氧化铁盐法,对其氧化除砷效果进行了评价.考察了高铁酸盐除砷的适宜pH值范围、氧化时间和絮凝时间,定性和定量分析了盐度、硬度等因素对高铁酸盐除砷效果的影响.结果表明,高铁酸盐与砷浓度比为15∶1,最佳pH为5.5~7.5,适宜的氧化时间为10min,絮凝时间为30min,处理后的水样中砷残留量可达到国家饮用水标准;盐度和硬度不干扰除砷过程.与传统的铁盐法和氧化铁盐法对比,此方法简便,高效,无二次污染,更有利于饮用水的清洁化除砷.  相似文献   

3.
Natural and anthropogenic arsenic (As) contamination of water sources pose serious health concerns, especially for small communities in rural areas. This study assessed the applicability of three industrial byproducts (coal fly ash, lignite, and green waste compost) as the low-cost adsorbents for As(V) removal under various field-relevant conditions (dissolved oxygen, As(V)/Fe ratio, solution pH, and presence of competing species). The physico-chemical properties of the adsorbents were characterized by XRD, XRF, FT-IR, and NMR analysis. Batch experiments demonstrated that coal fly ash could provide effective As(V) removal (82.1%-95%) because it contained high content of amorphous iron/aluminium hydroxides for As(V) adsorption and dissolvable calcium minerals for calcium arsenate precipitation. However, the addition of lignite and green waste compost was found unfavourable since they hindered the As(V) removal by 10%-42% possibly due to dissolution of organic matter and ternary arsenate-iron-organic matter complexes. On the other hand, higher concentrations of dissolved iron (comparing As(V)/Fe ratios of 1:1 and 1:10) and dissolved oxygen (comparing 0.2 and 6 mg/L) only marginally enhanced the As(V) removal at pH 6 and 8. Thus, addition of dissolved iron, water aeration, or pH adjustment became unnecessary because coal fly ash was able to provide effective As(V) removal under the natural range of geochemical conditions. Moreover, the presence of low levels of background competing (0.8 or 8 mg/L of humic acid, phosphate, and silicate) imposed little influence on As(V) removal, possibly because the high adsorption capacity of coal fly ash was far from exhaustion. These results suggested that coal fly ash was a potentially promising adsorbent that warranted further investigation.  相似文献   

4.
under As stress, proper mechanisms are employed by AM fungi to protect tobacco against As uptake. Results confirm that AM fungi can play an important role in food quality and safety.  相似文献   

5.
The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that selenium(IV) (Se(IV)) and vanadium(V) (V(V)) show slight effects on the adsorption of As(V) with Fe2O3. The results also showed that adsorption of As(V) on Al2O3 was not affected by chloride and nitrate anions, but slightly by Se(IV) and V(V) ions. Unlike the adsorption of As(V) with Fe2O3, that with Fe2O3 was affected by the presence of sulfate in water solutions. Both phosphate and silica have significant adverse effects on the adsorption of As(V) adsorption with Fe2O3 and Al2O3. Compared to the other tested anions, phosphate anion was found to be the most prominent solute affecting the As(V) adsorption with Fe2O3 and Al2O3. In general, Fe2O3 has a better performance than Al2O3 in removal of As(V) within a water environment where multi competing solutes are present.  相似文献   

6.
The study focused on the effect of several typical competing solutes on removal of arsenic with Fe_2O_3 and AL_2O_3.The test results indicate that chloride,nitrate and sulfate did not have detectable effects,and that selenium(Ⅳ)(Se(Ⅳ))and vanadium(Ⅴ)(V(Ⅴ)) showed slight effects on the adsorption of As(Ⅴ)with Fe_2O_3.The results also showed that adsorption of As(Ⅴ)on AL_2O_3 was not affected by chloride and nitrate anions,but slightly by Se(Ⅳ)and V(Ⅴ)ions.Unlike the adsorption of As(Ⅴ)with Fe_2O_3,that with Fe_2O_3 was affected by the presence of sulfate in water solutions.Both phosphate and silica have significant adverse effects on the adsorption of As(Ⅴ)adsorption with Fe_2O_3 and Al_2O_3.Compared to the other tested anions,phosphate anion was found to be the most prominent solute affecting the As(Ⅴ)adsorption with Fe_2O_3 and Al_2O_3.In general,Fe_2O_3 has a better performance than Al_2O_3 in removal of As(Ⅴ)within a water environment where multi competing solutes are present.  相似文献   

7.
An effective adsorbent for arsenic removal was synthesized by hydrothermal treatment of waste glass powder (HGP), followed by loading iron(III) oxyhydorxide on the surface of waste glass powder (GP). The ?Si-O-H group was formed on the surface of GP and the specific surface area of GP powder was slightly increased after hydrothermal treatment. FeOOH was loaded on the surface of HGP by the hydrolysis of FeCl3. The formation conditions of FeOOH were also investigated. The ability of this new adsorbent for arsenic removal was tested. The results indicate that the highest arsenic removal efficiency is about 97% for 1 mg/L As(V) solution at pH 6 and keeping time 2h.  相似文献   

8.
氧化铜纳米颗粒(CuO NPs)可以通过农药和肥料施用、意外泄露或污水灌溉进入As污染农田土壤,从而对土壤环境因子和As生物有效性产生影响.本试验选取两种不同类型土壤(安徽宿松黄棕壤和黑龙江海伦黑土)进行人工As污染,添加不同浓度的CuO NPs,探究90 d淹水-落干过程中CuO NPs对As污染农田环境因子和As生物有效态的影响.结果表明,CuO NPs进入土壤后12 h内快速溶解产生Cu2+,且在黄棕壤中的溶解速度较黑土迅速.CuO NPs可在短时间内降低土壤pH,提高土壤氧化还原电位(Eh),降低土壤电导率(EC),但随着培养时间增加土壤EC逐渐提高.一定时间内CuO NPs在两种类型土壤中可降低51.0%~82.5%土壤浸出液中的As和15.7%~66.5%的As生物有效性,减少淹水时Fe (II)的含量.但在土壤落干时期产生一定的“纳米效应”从而促进了Fe (II)的产生.研究表明,CuO NPs进入As污染农田改变了土壤环境因子,一定时间内降低了土壤As生物有效性.  相似文献   

9.
Cadmium (Cd) and arsenic (As) are two of the most toxic elements. However, the chemical behaviors of these two elements are different, making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(II) and As(V) removal. To solve this problem, we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB), a novel ternary material, to perform this task, wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties. The maximum adsorption capacity of HFMB was 67.11?mg/g for Cd(II) and 35.59?mg/g for As(V), which is much higher compared to pristine biochar (11.06?mg/g, 0?mg/g for Cd(II) and As(V), respectively). The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(II) to HFMB, while ligand exchange was the adsorption mechanism that bound As(V).  相似文献   

10.
以腐植酸(HA)代表天然有机质,采用平衡透析和超滤的方法研究铁离子(Fe (II)、Fe (III))对不同分子量HA与砷离子(As (V)、As (III))络合作用的影响,并利用红外光谱(FT-IR)表征其络合特征.结果发现,Fe (II)和Fe (III)均能增强HA络合As能力,且对As (V)络合能力的增强作用大于As (III);pH值显著影响HA络合As能力;溶解性有机碳(DOC)浓度由5mg/L增大到200mg/L,As络合百分比随之增加,此时HA-Fe (III)络合As (III)百分比最大,为24.55%;初始As浓度由10μg/L增加1000μg/L,As络合百分比随之降低,其中HA-Fe (III)络合As (III)百分比最低,为3.11%.相同环境条件下,分子量>100kDa络合As百分比最大,其中HA-Fe (II)络合As (III)的百分比最高为26.43%;分子量小于10kDa的HA络合As百分比明显高于其他分子量的HA.Fe的增强作用主要源于Fe与羧基形成桥梁再与As络合形成三元络合物.  相似文献   

11.
The ligand exchange adsorbent could be used to remove the toxic arsenic(V) and phosphate efficiently from water even in the presence of foreign anions and possible to apply in chemical industry.  相似文献   

12.
The present work deals with the As(Ⅴ) removal from an aqueous medium by calcined refractory grade bauxite (CRB) as a function of solution pH, time, As(Ⅴ) concentration and temperature. The residual As(Ⅴ) was lowered from 2 mg/L to below 0.01 mg/L in the optimum pH range 4.0-7.0 using a 5 g/L CRB within 3 h contact time. The adsorption data fits well with Langmuir isotherm and yielded Langmuir monolayer capacity of 1.78 mg As(Ⅴ)/g of CRB at pH 7.0. Presence of anions such as silicate and phosphate decreased As(Ⅴ) adsorption efficiency. An increase temperature resulted a decrease in the amount of As(Ⅴ) adsorbed by 6%. The continuous fixed bed column study showed that at the adsorbent bed depth of 30 cm and residence time of 168 min, the CRB was capable of treating 340 bed volumes of As(V) spiked water (C0 = 2 mg/L) before breakthrough (Ce = 0.01 mg/L). This solid adsorbent, although not reusable, can be considered for design of adsorption columns as an efficiency arsenic adsorption media.  相似文献   

13.
通过改变砷的初始浓度、砷价态、细菌接种比、铁锰浓度等因素来研究不同条件下Pseudomonas putida strain MnB1原位诱导形成生物铁锰氧化物(Biogenic Fe-Mn oxides,BFMO)对As(Ⅲ)和As(V)的去除效果与机制.结果表明:①当As(Ⅲ)和As(V)初始浓度为0.5~5 mg·L-1时,原位形成的BFMO对As(Ⅲ)和As(V)有良好的去除效率,均在62%以上;②当细菌接种比为0.1%~0.5%时,As(Ⅲ)和As(V)的去除效率与细菌接种比成正比,当细菌接种比大于0.5%时,As(Ⅲ)和As(V)的去除效率基本维持在85%以上,未发生明显变化;③当MnCO3浓度为0.2~0.8 g·L-1或Fe(Ⅱ)浓度为2.5~25 mg·L-1时,原位诱导产生的BFMO对As(Ⅲ)和As(V)的去除率随MnCO3浓度或Fe(Ⅱ)浓度的增加而增大;当MnCO3或Fe(Ⅱ)浓度再升高时,As(Ⅲ)和As(V)的去除效率基本保持不变.微观特征分析结果表明,原位形成的BFMO与As(Ⅲ)和As(V)反应后主要产物为As(V),其去除主要以吸附为主,还存在共沉淀作用.总体而言,原位形成的BFMO适用于砷污染水环境的修复.  相似文献   

14.
砷超富集植物的热解特征及其与砷含量的关系   总被引:1,自引:1,他引:1  
不同热解气氛和升温速率的比较研究表明,在空气气氛条件和25℃·min-1的升温速率下,砷超富集植物的热解曲线特征明显且实验速度适中,因此,是适用于砷超富集植物的热解实验条件.在该实验条件下,不同含砷浓度的蜈蚣草(Pteris vittata L.)和大叶井口边草(P.cretica L.)的热解温度主要集中在200~500℃之间.与低砷蜈蚣草相比,高砷蜈蚣草在300℃附近热解减弱,而在450℃附近热解加剧,蜈蚣草体内的砷有促使其热解过程向高温方向偏移的趋势;而大叶井口边草体内的砷则促使其在300℃附近热分解程度加剧,而对450℃附近的热解程度影响不明显.  相似文献   

15.
Arsenic methyltransferase(As3mt) catalyzes the conversion of inorganic arsenic(i As) to its methylated metabolites, including toxic methylarsonite(MAs~Ⅲ) and dimethylarsinite(DMAs~Ⅲ). Knockout(KO) of As3 mt was shown to reduce the capacity to methylate i As in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type(WT) mice exposed to arsenite(iA s~Ⅲ) in drinking water. WT mice were exposed to50 mg/L As and As3mt-KO mice that cannot tolerate 50 mg/L As were exposed to 0, 15, 20, 25 or30 mg/L As. iA s~Ⅲaccounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iA s and methylated arsenicals: iA s~Ⅲ, MAs~Ⅲand DMAs~Ⅲ represented 55%‐68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAs~Ⅲ, were found in the intestine of WT, but not As3mt-KO mice,suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iA s methylation in adverse effects of iA s exposure.  相似文献   

16.
应用室内模拟培养的方法,研究了人工合成铁、铝矿物和镁铝双金属氧化物对砷超标土壤中砷的钝化效果.每种钝化剂均设置0.1%、0.5%、1.0%、2.5%和5.0%五个添加量处理.结果表明,添加水铝矿明显降低了土壤pH值,其中,添加5%水铝矿的处理降幅最大,达到1.20;而添加镁铝双金属氧化物则显著提高了土壤pH值,5%镁铝双金属氧化物的处理土壤pH值由5.04最高可提高至8.09.添加铁铝矿物均降低了土壤有效砷的含量,下降幅度为1.89%~64.15%;而添加镁铝双金属氧化物则使土壤有效砷含量增加;添加水铁矿和针铁矿处理对提高土壤中残留态砷含量的作用较为明显.总体看来,两种人工合成铁矿较镁铝双金属氧化物和水铝矿对土壤中砷有更好的钝化效果,可以作为钝化剂应用于土壤中砷的钝化.  相似文献   

17.
The removal of As(V) from synthetic water was studied using four different nanofiltration (NF) membranes (ESNA-1-K1, NF270, ESNA-1-LF, and HODRA-CORE). The influences of ion concentration, transmembrane pressure (TMP), and the presence of natural organic matter (humic acid, HA) on the arsenic removal efficiency and permeate flux were investigated. The arsenic rejection of ESNA- 1-LF was higher than those of the other membranes in all experiments (> 94%), and the HODRA-CORE membrane gave the lowest removal of arsenic (< 47%). An increase in the ion concentration in the feed solution and addition of HA decreased the arsenic rejection of the HODRA-CORE membrane. However, both increasing of the ion concentration and addition of HA made the rejection increased for the other membranes (ESNA-1-K1, NF270, and ESNA-1-LF). With increasing TMP, for all four NF membranes, increases in both arsenic rejection and permeate flux were observed. The permeate fluxes of the four NF membranes decreased to some extent after addition of HA to the solutions for operating time of 6 hr.  相似文献   

18.
三价铁促进生物氧化锰稳定土壤砷的效果和机制   总被引:2,自引:0,他引:2  
通过室内模拟实验,研究了三价铁对生物氧化锰(BMO)稳定化砷污染土壤的促进效果与作用机制.实验结果表明:三价铁的添加提高了BMO对土壤中砷的稳定化效率,当三价铁以质量分数百分比(以Fe计)为0.5%、1%、2%和4%添加时,砷的稳定化效率由单独BMO处理的63.02%增加至86.04%、93.86%、96.56%和97.98%;由连续提取实验结果可知,添加三价铁能够促进土壤中砷的结合形态由可交换态、专属吸附态向无定型铁锰结合态和结晶型铁锰结合态转变,增强土壤中砷的稳定化作用;风险分析进一步表明添加三价铁后砷的环境风险由中风险转变为低风险;矿物晶体结构分析表明,添加三价铁后土壤中出现水铁矿、纤铁矿等次生铁氧化物,这些铁氧化物对土壤中砷有良好的吸附固定能力.总体而言,三价铁的存在能够提高BMO对砷污染土壤的稳定化效率,但三价铁的添加量不宜过高,否则会引起土壤酸化问题.  相似文献   

19.
Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono-and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5 mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (<10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L-0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water.  相似文献   

20.
Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono- and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5 mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (< 10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L–0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号