首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The mobility of isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] from an alginate-based controlled release (CR) formulation was investigated by using soil columns. A layered bed system simulating the typical arrangement under a plastic greenhouse, which is composed of sand, peat, amended soil and native soil was used. The CR formulation was based on sodium alginate (1.87%), isoproturon (1.19%), natural bentonite (3.28%), and water (93.66%), and was compared to technical grade isoproturon. The use of the alginate-bentonite CR formulation produced less vertical mobility of the active ingredient as compared to the technical product. There was no presence of herbicide in the leachate when the alginate-bentonite CR formulation was used. However, 0.90% of isoproturon appeared when the treatment was carried out with technical grade material. Isoproturon mobility was modelled using the programme CMLS, which showed the peat layer to retard pesticide leaching. Analysis of the soil columns showed the highest isoproturon concentration in the peat layer.  相似文献   

2.
Abstract

Movement and degradation of 14C‐atrazine (2‐chloro 4‐(ethylamino)‐6‐(isopropylamino)‐s‐triazine, was studied in undisturbed soil columns (0.50m length × 0.10m diameter) of Gley Humic and Deep Red Latosol from a maize crop region of Sao Paulo state, Brazil. Atrazine residues were largely confined to the 0–20cm layers over a 12 month period Atrazine degraded to the dealkylated metabolites deisopropylatrazine and deethylatrazine, but the major metabolite was hydroxyatrazine, mainly in the Gley Humic soil. Activity detected in the leachate was equivalent to an atrazine concentration of 0.08 to 0.11μg/1.

The persistence of 14C‐atrazine in a maize‐bean crop rotation was evaluated in lysimeters, using Gley Humic and Deep Red Latosol soils. Uptake of the radiocarbon by maize plants after 14‐days growth was equivalent to a herbicide concentration of 3.9μg/g fresh tissue and was similar in both soils. High atrazine degradation to hydroxyatrazine was detected by tic of maize extracts. After maize harvest, when beans were sown the Gley Humic soil contained an atrazine concentration of 0.29 μg/g soil and the Deep Red Latosol, 0.13 μg/g soil in the 0–30 cm layer. Activity detected in bean plants corresponded to a herbicide concentration of 0.26 (Gley Humic soil) and 0.32μg/g fresh tissue (Deep Red Latossol) after 14 days growth and 0.43 (Gley Humic soil) and 0.50 μg/g fresh tissue (Deep Red Latossol) after 97 days growth. Traces of activity equivalent to 0.06 and 0.02μg/g fresh tissue were detected in bean seeds at harvest. Non‐extractable (bound) residues in the soils at 235 days accounted for 66.6 to 75% (Gley Humic soil and Deep Red Latossol) of the total residual activity.  相似文献   

3.
Atrazine sorption and fate in a Ultisol from humid tropical Brazil   总被引:1,自引:0,他引:1  
This study combined laboratory based microcosm systems as well as field experiments to evaluate the mobility of atrazine on a Ultisol under humid tropical conditions in Brazil. Results from sorption experiments fit to the Freundlich isotherm model [K(f) 0.99 mg kg(-1)/(mg l(-1))(1/n)], and indicate a low sorption capacity for atrazine in this soil and consequently large potential for movement by leaching and runoff. Microcosm systems using (14)C-atrazine to trace the fate of the applied herbicide, showed that 0.33% of the atrazine was volatilized, 0.25% mineralized and 6.89% was recorded in the leachate. After 60 d in the microcosms, 75% of the (14)C remained in the upper 5 cm soil layer indicating atrazine or its metabolites remained close to the soil surface. In field experiments, after 60 d, only 5% of the atrazine applied was recovered in the upper soil layers. In the field experiments atrazine was detected at a depth of 50 cm indicating leaching. Simulating tropical rain in field experiments resulted in 2.1% loss of atrazine in runoff of which 0.5% was adsorbed onto transported soil particles and 1.6% was in solution. Atrazine runoff was greatest two days after herbicide application and decreased 10 fold after 15 d. The use of atrazine on Ultisols, in the humid tropics, constitutes a threat to water quality, causing surface water and ground water pollution.  相似文献   

4.
Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.  相似文献   

5.
This research aimed to develop slow-release formulations (SRFs) of 2,4-dichlorophenoxyacetic acid (2,4-D) using zeolite and bentonite minerals modified with cetyltrimethylammonium (CTMA) surfactant. Adsorption–desorption, greenhouse bioassay and column experiments were carried out to assess the potential of the SRFs to control weeds while reducing the herbicide leaching losses to deep layers of soil. The results showed that only 6.5 mmol 2,4-D kg?1 was retained by Na-bent, and the herbicide was not adsorbed by Na-zeol at all. The surface modification with CTMA surfactant, however, improved the 2,4-D adsorption capacity of the zeolite and bentonite up to 207.5 and 415.8 mmol kg?1, respectively. The synthesized organo-minerals slowly released the retained 2,4-D discharging 22 to 64% of the adsorbed 2,4-D to the solution phase within 7 days. The SRFs significantly (P = 0.05) reduced the herbicide mobility within the soil columns keeping a great portion of the herbicide active ingredient in the upper 5 cm soil layer. The SRFs were significantly (P = 0.05) as effective as the free technical herbicide in weed control without harming the ryegrass as the main plant. Therefore, the synthesized SRFs could be considered as useful tools for weed control in sustainable agriculture.  相似文献   

6.
Different controlled release formulations (CRFs) of isoproturon, imidacloprid and cyromazine have been studied to contribute to diminish, somehow, the problems related to the application of conventional formulations. The alginate-based CRFs were based on sodium alginate (1.90%), Technical grade (TG) isoproturon or imidacloprid (1.20%), natural bentonite (3.30%), and water (93.6%), and the lignin-based CRF was based on kraft lignin (50.0%) and TG cyromazine (50.0%). The mobility of non-formulated TG pesticides and CRFs were compared by using soil columns. The use of CRFs retard release and reduce the presence of pesticides in the leachate and, moreover, the pesticides stay in the soil longer. Sorption capacity of the soil for pesticides was measured using batch experiments. The results obtained (11.67 mg kg(- 1) for isoproturon, 3.17 mg kg(- 1) for imidacloprid and 0.63 mg kg(-1) for cyromazine) were in agreement with those obtained under dynamic conditions.  相似文献   

7.
Macro-porosity and leaching of atrazine in tilled and orchard loamy soils   总被引:1,自引:0,他引:1  
Atrazine is the most commonly detected herbicide in the groundwater. Leaching of atrazine largely depends on soil management practices. The aim of this study was to examine leaching of atrazine in tilled and orchard silty loam soils. The experimental objects included: conventionally tilled field (CT) with main tillage operations including pre-plow (10 cm) + harrowing, mouldboard ploughing (20 cm), and a 35 year-old apple orchard (OR) with a permanent sward. To determine leaching of atrazine soil columns of undisturbed structure were taken with steel cylinders of 21.5 cm diameter and 20 cm high from the depth of 0–20 cm. All columns were equilibrated at water content corresponding to field capacity (0.21 kg kg−1). Atrazine suspended in distilled water was dripped uniformly onto the surface of each column. Then water was infiltrated and breakthrough times of leachates were recorded. Atrazine concentration in the leachates was determined by means of HPLC Waters. Macro-porosity and percolation rate were higher in OR than CT soil. Cumulative recovery % of the atrazine applied was 1.267% for OR and approximately one third more from the CT soil but the rate of leaching (per unit of time) was greater from the OR soil. The lower leaching under OR than CT can be due to a greater SOM and the presence of earthworm burrows with organic burrow linings that could adsorb atrazine and contribute to preferential flow allowing solutes to bypass parts whereas the greater rate of leaching due to a greater infiltration rate.The results indicate potential of management practices for minimizing atrazine leaching.  相似文献   

8.
In the present study, diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-metoxi-1-methylethyl)acetamide] leaching was studied in undisturbed soil columns collected in a cotton crop area in Mato Grosso State, Brazil. The pesticides were applied to the soil surface in dosages similar to those used in a cotton plantation. To assess the leaching process, soil columns were submitted to simulated rain under laboratory conditions at 25 ± 3°C, in the absence of wind and direct solar radiation. During the rain simulations, leachate solutions were collected and herbicide concentrations were determined. At the end of the experiment, the soil columns were cut into 10 cm sections to determine the remaining herbicide concentrations through the soil profile. Metolachlor was detected in all soil sections, and approximately 4% of the applied mass was leached. Diuron was detected only in the upper two soil sections and was not detected in the leachate. A linear correlation (r > 0.94) between the metolachlor soil concentrations and the organic contents of the soil sections was observed. Mass balance suggests that around 56% of diuron and 40% of metolachlor were degraded during the experiments. Measurements of the water table depth in the area where the samples were collected showed that it varied from 2 to 6 m and is therefore vulnerable to contamination by the studied herbicides, particularly metolachlor, which demonstrated a higher leaching potential.  相似文献   

9.
Metribuzin, a triazine herbicide, is poorly sorbed in the soils, therefore leaches to lower soil profile. Fly ash amendment, which enhanced metribuzin sorption in soils, may play a significant role in reducing the downward mobility of herbicide. Therefore, the present study reports the effect of Inderprastha fly ash amendment on metribuzin leaching in three soil types. Fly ash was amended at 1, 2 and 5% levels in the upper 15 cm of 30 cm long packed soil columns. Results suggested a significant reduction in the leaching losses of metribuzin in fly ash-amended columns of all the three soil types and effect increased with increase in the level of fly ash. Even after percolating water equivalent to 362 mm rainfall no metribuzin was recovered in the leachate of 5% fly ash-amended columns. Fly ash application affected both metribuzin breakthrough time and its maximum concentration in the leachate. Further, it resulted in greater retention of metribuzin in the application zone and better effect was observed in the organic carbon poor soils.  相似文献   

10.
The herbicide atrazine is the most commonly detected pesticide in groundwater world-wide. A new microcosm test-system was used to determine the fate of 14C-atrazine in a Brazilian oxisol. 14C Ring-labelled atrazine was applied in a mixture with the commercial product Gesaprim 500 (Novartis) at a rate of 3 kg ha-1. During two months, about 1% of the initially applied amount was lost by volatilization. The mineralization of the pesticide, measured directly using 14CO2 evolved from the applied pesticide, was between 0.09% and 0.16%, whereas less than 0.2% was leached. The distribution of radioactivity in the soil profile showed that most of the radioactivity remained in the top soil down to a 3 cm depth. The radioactivity in the upper 3 cm of the column was adsorbed perferably in fulvic acid (FA) and human fractions.  相似文献   

11.
[Carbonyl-14C]methabenzthiazuron (MBT) was applied to growing winter wheat in an outdoor lysimeter. The amount applied corresponded to 4 kg Tribunil/ha. 140 days after application the 0-2.5 cm soil layer was removed from the lysimeter. This soil contained about 40% of the applied radioactivity. Using 0,01 M CaCl2 solution or organic solvents, the extractable residues were removed from the soil. The bioavailability of the non-extractable as well as aged residues remaining in the soil was investigated in standardized microecosystems containing 1.5 kg of dry soil. During a 4 weeks period the total uptake (4 maize plants/pot) amounted up to 3.6; 2.2; and 0.9% of the radioactivity from soils containing aged MBT residues, MBT residues non-extractable with 0.01 M CaCl2 or MBT residues non-extractable with organic solvents, respectively. About 20% of the radioactivity found in maize leaves represented chromatographically characterized parent compound. At the end of the plant experiment the soil was extracted again with 0.01 M CaCl2 and with organic solvents. The soil extracts and also the organic phases obtained from the aqueous fulvic acid solution contained unchanged parent compound.  相似文献   

12.
Field studies monitoring pesticide pollution in the Morvan region (France) have revealed surface water contamination by some herbicides. The purpose of this study was to investigate in greater detail the transport of two herbicides, used in Christmas tree production in the Morvan, under controlled laboratory conditions. Thus, the leaching of hexazinone (3-cyclohexyl-6-dimethyl-amino-1-methyl-1,3,5-triazine-2,4 (1H,3H) dione) and glyphosate (N-(phosphono-methyl-glycine)) through structured soil columns was studied using one loamy sand and two sandy loams from sites currently under Christmas tree cultivation in the Morvan. The three soils were cultivated sandy brunisol [Sound reference base for soils, D. Baize, M.C. Girard (Coord.), INRA, Versailles, 1998, 322 p] or, according to the FAO [FAO, World reference base for soil resources, ISSS-ISRIC-FAO, FAO, Rome, Italy, 1998], the La Garenne was an arenosol and the two other soils were cambisols. The clay contents of the soils ranged from 86 to 156 g kg(-1) and the organic carbon ranged from 98 to 347 g kg(-1). After 160 mm of simulated rainfall applied over 12 days, 2-11% of the applied hexazinone was recovered in the leachate. The recovery was much higher than that of glyphosate, which was less than 0.01%. The greater mobility of hexazinone might be related to its much lower adsorption coefficient, K(oc), 19-300 l kg(-1), compared with 8.5-10231 l kg(-1) for glyphosate (literature values). Another factor that may explain the higher amounts of hexazinone recovered in the leachates of the three soil columns is its greater persistence (19.7-91 days) relative to that of glyphosate (7.9-14.4 days). The mobility of both herbicides was greater in the soils with higher gravel contents, coarser textures, and lower organic carbon contents. Moreover, glyphosate migration seems negatively correlated not only to soil organic carbon, but also to aluminium and iron contents of soils. This soil column study suggests that at the watershed scale, surface water contamination by hexazinone could occur via the horizontal subsurface flow in upper centimeters of soil. In contrast, the surface water contamination with glyphosate by this mechanism appears unlikely.  相似文献   

13.
Leaching rates of the herbicide dichlorprop [(+/--2-(2,4-dichlorophenoxy)propanoic acid] and nitrate were measured together in field lysimeters containing undisturbed clay and peat soils. The purpose of the study was to investigate the leaching pattern of the two solutes in structured soils under different precipitation regimes. Spring barley (Hordeum distichum L.) was sown on each monolith and fertilized with 100 kg N ha(-1). Dichlorprop was applied at a rate of 1.6 kg active ingredient (a.i.) ha(-1). Each soil type received supplemental irrigation at two levels ('average' and 'worst-case'), giving total water inputs (irrigation and precipitation) of 664 and 749 mm year(-1), respectively. The larger water input approximately doubled the nitrate loads, from, on average, 11.6 to 21.8 kg N ha(-1) year(-1) in the clay soil and from 37.6 to 65.4 kg N ha(-1) year(-1) in the peat soil. In contrast, dichlorprop leaching was reduced by more than one order of magnitude when the water input was increased, from average amounts of 3.22 to 0.26 g a.i. ha(-1) during an S-month period in the clay and from 28.9 to 2.67 g a.i. ha(-1) in the peat. This leaching pattern of dichlorprop was explained in terms of preferential flow. The dried-out topsoil of 'average' watered monoliths may have allowed water flow in cracks, thus moving some of the herbicide rapidly through the topsoil to the subsoil. Once the compound reached the subsoil, degradation rates would be reduced and the herbicide residues would be stored for later leaching. Nitrate was presumably more evenly distributed in the soil matrix; therefore, water rapidly moving through macropores would not carry significant amounts of nitrate. In contrast, leaching would occur more evenly through the soil matrix, causing larger nitrate loads in the 'worst-case' watered monoliths. These results show that wet years may constitute a worst case scenario in terms of nitrate leaching, but not pesticide leaching, if macropore flow exerts a significant influence on leaching.  相似文献   

14.
Different controlled release formulations (CRFs) of isoproturon, imidacloprid and cyromazine have been studied to contribute to diminish, somehow, the problems related to the application of conventional formulations. The alginate-based CRFs were based on sodium alginate (1.90%), Technical grade (TG) isoproturon or imidacloprid (1.20%), natural bentonite (3.30%), and water (93.6%), and the lignin-based CRF was based on kraft lignin (50.0%) and TG cyromazine (50.0%). The mobility of non-formulated TG pesticides and CRFs were compared by using soil columns. The use of CRFs retard release and reduce the presence of pesticides in the leachate and, moreover, the pesticides stay in the soil longer. Sorption capacity of the soil for pesticides was measured using batch experiments. The results obtained (11.67 mg kg? 1 for isoproturon, 3.17 mg kg? 1 for imidacloprid and 0.63 mg kg?1 for cyromazine) were in agreement with those obtained under dynamic conditions.  相似文献   

15.
Erratum     
The influence of soil macro-porosity and manure on atrazine (6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine) transport was investigated under laboratory conditions using disturbed and undisturbed soil columns. The macro-porosity in the soil column was obtained with CT scanning technique. Liquid manure was applied at the surface of soil column, 19 cm long and 8 cm in diameter, at a rate of 60 m3/ha. Experimental results revealed that atrazine moves faster through the soils in the presence of manure compared to soil without application of manure. The average time for elusion and the relative peak concentration in the disturbed soil column without manure was 14.5 h and 3.1%, respectively compared to 11.0 h and 6.9% in the presence of manure, respectively. Similar behavior was observed in the case of disturbed soil columns. Soil macro-porosity has shown large impact on atrazine transport, especially in the presence of manure.  相似文献   

16.
The influence of soil macro-porosity and manure on atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine) transport was investigated under laboratory conditions using disturbed and undisturbed soil columns. The macro-porosity in the soil column was obtained with CT scanning technique. Liquid manure was applied at the surface of soil column, 19 cm long and 8 cm in diameter, at a rate of 60 m3/ha. Experimental results revealed that atrazine moves faster through the soils in the presence of manure compared to soil without application of manure. The average time for elusion and the relative peak concentration in the disturbed soil column without manure was 14.5 h and 3.1%, respectively compared to 11.0 h and 6.9% in the presence of manure, respectively. Similar behavior was observed in the case of disturbed soil columns. Soil macro-porosity has shown large impact on atrazine transport, especially in the presence of manure.  相似文献   

17.
The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha(-1) and 1.3 kg ha(-1), respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha(-1)). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 microg L(-1). Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 microg L(-1) . Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.  相似文献   

18.
Constructed wetlands offer promise for removal of nonpoint source contaminants such as herbicides from agricultural runoff. Laboratory studies assessed the potential of soils to degrade and sorb atrazine and fluometuron within a recently constructed wetland. The surface 3 cm of soil was sampled from two cells of a Mississippi Delta constructed wetland; one shallow area disturbed only hydrologically, and the second excavated to provide greater water-holding capacity. The excavated area was more acidic on average (pH 4.85 versus 5.21), but otherwise the physical properties and general microbial enzyme activities in the two areas were similar. Soils were treated with 84 and 68 microg kg(-1) soil (14)C-ring labeled atrazine and fluometuron, respectively, and incubated under either saturated (88% moisture, w:w) or flooded (1cm standing water) conditions. Soils were sampled over 32 days and extracted for herbicide and metabolite analysis. Under saturated conditions, fluometuron metabolized to desmethylfluometuron (DMF) with a half-life equal 25-27 days. However, under flooded conditions, the half-life of fluometuron was more than 175 days. Atrazine dissipated rapidly in saturated and flooded soil with a half-life of approximately 23 days, but only 10% of atrazine was mineralized to CO(2). The overall atrazine and fluometuron dissipation rates were similar between the two cells, but each area had a different pattern of metabolite accumulation. The major route of atrazine dissipation was incorporation of atrazine residues into methanol-nonextractable (soil-bound) components, with minimal extractable metabolite accumulation. A mixed-mode extractant (potassium phosphate:acetonitrile) recovered greater amounts of (14)C-residues from atrazine-treated soils, suggesting that hydrolysis of atrazine to hydroxylated metabolites was a major component of the bound residues. These studies indicate the potential for herbicide dissipation in wetland soils and a differential effect of flooding on the fate of these herbicides.  相似文献   

19.
The aim of this study was to investigate the behavior of the association between atrazine and glyphosate in the soil through mineralization and degradation tests. Soil treatments consisted of the combination of a field dose of glyphosate (2.88 kg ha?1) with 0, ?, 1 and 2 times a field dose of atrazine (3.00 kg ha?1) and a field dose of atrazine with 0, ?, 1 and 2 times a field dose of glyphosate. The herbicide mineralization rates were measured after 0, 3, 7, 14, 21, 28, 35, 42, 49, 56 and 63 days of soil application, and degradation rates after 0, 7, 28 and 63 days. Although glyphosate mineralization rate was higher in the presence of 1 (one) dose of atrazine when compared with glyphosate alone, no significant differences were found when half or twice the atrazine dose was applied, meaning that differences in glyphosate mineralization rates cannot be attributed to the presence of atrazine. On the other hand, the influence of glyphosate on atrazine mineralization was evident, since increasing doses of glyphosate increased the atrazine mineralization rate and the lowest dose of glyphosate accelerated atrazine degradation.  相似文献   

20.
Influence of soil texture and tillage on herbicide transport   总被引:2,自引:0,他引:2  
Two long-term no-till corn production studies, representing different soil texture, consistently showed higher leaching of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] to groundwater in a silt loam soil than in a sandy loam soil. A laboratory leaching study was initiated using intact soil cores from the two sites to determine whether the soil texture could account for the observed differences. Six intact soil cores (16 cm dia by 20 cm high) were collected from a four-year old no-till corn plots at each of the two locations (ca. 25 km apart). All cores were mounted in funnels and the saturated hydraulic conductivity (Ksat) was measured. Three cores (from each soil texture) with the lowest Ksat were mixed and repacked. All cores were surface treated with 1.7 kg ai ha(-1) [ring-14C] atrazine, subjected to simulated rainfall at a constant 12 mm h(-1) intensity until nearly 3 pore volume of leachate was collected and analyzed for a total of 14C. On an average, nearly 40% more of atrazine was leached through the intact silt loam than the sandy loam soil cores. For both the intact and repacked cores, the initial atrazine leaching rates were higher in the silt loam than the sandy loam soils, indicating that macropore flow was a more prominent mechanism for atrazine leaching in the silt loam soil. A predominance of macropore flow in the silt loam soil, possibly due to greater aggregate stability, may account for the observed leaching patterns for both field and laboratory studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号