首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat valuation methods are most often developed and used to prioritize candidate lands for conservation. In this study the intent of habitat valuation was to inform the decision-making process for remediation of chemical contaminants on specific lands or surface water bodies. Methods were developed to summarize dimensions of habitat value for six representative aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy Oak Ridge Reservation in Oak Ridge, TN, USA. Several general valuation metrics were developed for three broad categories: site use by groups of organisms, site rarity, and use value added from spatial context. Examples of use value metrics are taxa richness, a direct measure of number of species that inhabit an area, complexity of habitat structure, an indirect measure of potential number of species that may use the area, and land use designation, a measure of the length of time that the area will be available for use. Measures of rarity included presence of rare species or communities. Examples of metrics for habitat use value added from spatial context included similarity or complementarity of neighboring habitat patches and presence of habitat corridors. More specific metrics were developed for groups of organisms in contaminated streams, ponds, and terrestrial ecosystems. For each of these metrics, cutoff values for high, medium, and low habitat value were suggested, based on available information on distributions of organisms and landscape features, as well as habitat use information. A companion paper describes the implementation of these habitat valuation metrics and scoring criteria in the remedial investigation for ETTP.  相似文献   

2.
The use of terrestrial and aquatic invertebrates as a management tool for monitoring change in ecosystems is reviewed and critically evaluated. Their suitability and value for assessing a range of environmental problems from pollution impacts, through habitat evaluation for conservation to the long-term degradation and recovery of ecosystems, is critically discussed. Guidelines are provided for the choice of appropriate bioindicators. Examples of the use of a broad spectrum of invertebrates to assess a variety of environmental problems are summarized. The particular potential of invertebrates for monitoring montane ecosystems is highlighted.  相似文献   

3.
Security buffers of Department of Defense (DoD) and Department of Energy (DOE) reservations provide long-term habitat protection for many rare and endangered species. The importance of these government-owned reservations as nationally valuable resources has been relatively unrecognized. During the last 50 years, the DOE Oak Ridge Reservation (ORR) has been a relatively protected island in a region of rapidly expanding urbanization and land clearing. Consisting of the Oak Ridge National Environmental Research Park and associated lands surrounding DOE facilities at Oak Ridge Tennessee, the unique nature of the ORR in the surrounding landscape is clearly visible from the air and has been documented using remote sensing data. Although forests dominate much of other regions of eastern Tennessee, this 15,000-ha tract of mostly natural forest habitat is unique in the southern Ridge and Valley physiographic province, which is otherwise widely developed for pasture, marginal cropland, woodlot, and urban uses. Twenty state-listed and federal-candidate plant species are known to be present on the ORR. This richness of species, which are provided protection by state and federal laws, exceeds that of the Great Smoky Mountains National Park on a species area basis and is an index of the value of the ORR both regionally and nationally in conserving biodiversity. With the end of the Cold War, changing DoD and DOE missions combined with increasing development pressure contribute to uncertainty in the future management of security reservations.  相似文献   

4.
Assessing Land-Use Impacts on Natural Resources   总被引:3,自引:1,他引:2  
/ Much information is available on changes that occur in natural resources from both spatially-explicit data on environmental conditions and models of the interactions of these conditions and resources with human activities. The strategy for assessing land-use impacts on natural resources developed in this paper provides a framework for using relevant data and models to address questions of how management practices can promote both use and protection of resources. This assessment strategy integrates spatially explicit environmental data using geographic information systems (GIS) with computer models that simulate changes in land cover in response to land-use impacts. The computer models also simulate susceptibility of species to changes in habitat suitability and landscape patterns. The approach is applied to management of limestone barrens on the Oak Ridge Reservation in East Tennessee. Potential limestone barrens habitats are identified by overlaying appropriate soils, geology, slope, and land-use/land-cover conditions. Their validity is tested against known sites containing rare species that occur in these habitats. The location of habitats at risk in the aftermath of human activities is determined by using an available area model that identifies the size and proximity of sites that particular types of species can no longer use as habitat. The resulting risk map can be used in land management planning. The approach uses readily available in situ and remotely sensed data and is applicable to a wide range of locations and land-use scenarios. This approach can be refined based on needs identified by land managers and on the sensitivity of the results to the resolution of available resource information.KEY WORDS: Land management; Assessment; Habitat characterization; Limestone barrens; Ecological modeling; Geographic information systems  相似文献   

5.
Site characterization is an essential initial step in determining the feasibility of remedial alternatives at hazardous waste sites. Physicochemical and mineralogical characterization of U-contaminated soils in deeply weathered saprolite at Area 2 of the DOE Field Research Center (FRC) site, Oak Ridge, TN, was accomplished to examine the feasibility of bioremediation. Concentrations of U in soil-saprolite (up to 291 mg kg(-1) in oxalate-extractable U(o)) were closely related to low pH (ca. 4-5), high effective cation exchange capacity without Ca (64.7-83.2 cmol(c) kg(-1)), amorphous Mn content (up to 9910 mg kg(-1)), and the decreased presence of relative clay mineral contents in the bulk samples (i.e., illite 2.5-12 wt. %, average 32 wt. %). The pH of the fill material ranged from 7.0 to 10.5, whereas the pH of the saprolite ranged from 4.5 to 8. Uranium concentration was highest (about 300 mg kg(-1)) at around 6 m below land surface near the saprolite-fill interface. The pH of ground water at Area 2 tended to be between 6 and 7 with U concentrations of about 0.9 to 1.7 mg L(-1). These site specific characteristics of Area 2, which has lower U and nitrate contamination levels and more neutral ground water pH compared with FRC Areas 1 and 3 (ca. 5.5 and <4, respectively), indicate that with appropriate addition of electron donors and nutrients bioremediation of U by metal reducing microorganisms may be possible.  相似文献   

6.
/ An integrated management plan to create favorable nesting habitat for the world-endangered Dalmatian pelicans, was tested at Kerkini irrigation reservoir, a Ramsar wetland. The lake is the major wintering site of Dalmatian pelicans in Europe, where the species lives year-round without breeding. The rise of water level at the reservoir during spring (exceeding 5 m) has an impact on the whole system, including several birds, which lose their nesting habitat. Although the integrity of the wetland demands ecological restoration with changes in its hydrologic regime, local socioeconomic conditions allow only habitat level interventions. During the planning phase of the management plan, both the ecological and social context of the interventions were considered. Monitoring of all pelican habitats and populations provided the scientific basis, while a socioecological survey on knowledge/attitudes of local fishermen toward wetland identified conflicts with specific resources and planned management. To gain public support, a broad information/education program was implemented. The education program for fishermen was based on the findings of the socioecological survey. The in situ management involved experimental construction of floating rafts, platforms over water, dredged-spoil islands, and platforms at various sites of the wetland. Monitoring of the managed habitats showed that most waterbirds used them for resting and roosting. Common terns nested on the rafts, cormorants on the platforms, and Dalmatian pelicans on the man-made island. Under the prevailing hydrologic and weather conditions, islands seem to be the most suitable habitat for pelican nesting. It is concluded that wildlife habitat management should integrate the ecological component, related to the needs of the species and ecosystem, with the social one, expressed by cooperation and involvement of the local community.KEY WORDS: Integrated management; Pelican; Nesting habitat; Habitat management; Reservoir-wetland; Public participation, Greece  相似文献   

7.
There is growing concern that recreational shoreline angling activity may negatively impact littoral and riparian habitats independent of any direct or indirect influences of fish harvest or fishing mortality through mechanisms such as disturbance (e.g., trampling, erosion) and pollution (e.g., littering). We sampled a suite of aquatic and terrestrial variables (i.e., water quality, aquatic and terrestrial macrophytes, soil compaction, anthropogenic refuse) at 14 high shoreline angling-activity sites (identified by way of interviews with conservation officers and angling clubs) within an urban area (Ottawa, Canada). For each high angling-activity site, a nearby corresponding low angling-activity site was sampled for comparison. We found that the percentage of barren area and soil compaction were greater in areas of high angling activity compared with areas that experienced relatively low angling activity. In addition, terrestrial and aquatic macrophyte density, height, and diversity were lower at high angling-activity sites. Angling- and non-angling-related litter was present in large quantities at each of the high angling-activity sites, and comparatively little litter was found at low angling-activity sites. Collectively, these findings indicate that shoreline angling does alter the riparian environment, contributing to pollution and environmental degradation in areas of high angling intensity. With growing interest in providing urban angling opportunities and in response to increasing interest in developing protected areas and parks, a better understanding of the ecologic impacts of shoreline angling is necessary to address multiuser conflicts, to develop angler outreach and educational materials, and to optimize management of angling effort to maintain ecologic integrity of riparian and aquatic ecosystems.  相似文献   

8.
Small mammals are important predators of gypsy moths (Lymantria dispar L.), which are major defoliators of deciduous forests in the northeastern United States. Abundance and habitat relationships of small mammals were studied during summers 1984 and 1985 on forested sites at Moshannon and Rothrock state forests in two physiographic regions of Pennsylvania (Allegheny High Plateaus Province and Valley and Ridge Province, respectively) that varied in potential susceptibility to defoliation. The white-footed mouse (Peromyscus leucopus), which is a major vertebrate predator of gypsy moths, was the most common small mammal on all sites. Of the four common species, northern short-tailed shrews (Blarina brevicauda), southern red-backed voles (Clethrionomys gapperi), and white-footed mice were more abundant at Moshannon compared to Rothrock State Forest, but masked shrews (Sorex cinereus) were more abundant at Rothrock. Elevation was a major factor affecting abundance and distribution of small mammals. Because of the greater abundance of small mammals and more suitable physiographic features at Moshannon compared to Rothrock State Forest, small mammals may be more effective as predators on gypsy moths in the Allegheny High Plateaus than the Valley and Ridge Province of Pennsylvania.  相似文献   

9.
This paper provides an introduction to a long-term biological monitoring program and the Environmental Management special issue titled Long-term Biological Monitoring of an Impaired Stream: Implications for Environmental Management. The Biological Monitoring and Abatement Program, or BMAP, was implemented to assess biological impairment downstream of U.S. Department of Energy (DOE) facilities in Oak Ridge, Tennessee, beginning in 1985. Several of the unique aspects of the program include its long-term consistent sampling, a focus on evaluating the effectiveness of specific facility abatement and remedial actions, and the use of quantitative sampling protocols using a multidisciplinary approach. This paper describes the need and importance of long-term watershed-based biological monitoring strategies, in particular for addressing long-term stewardship goals at DOE sites, and provides a summary of the BMAP’s objectives, spatial and temporal extent, and overall focus. The primary components of the biological monitoring program for East Fork Poplar Creek in Oak Ridge, Tennessee are introduced, as are the additional 9 papers in this Environmental Management special issue.  相似文献   

10.
Concern for the environment has increased over the past century, and the US Congress has responded to this concern by passing legislation designed to protect the nation’s ecological biodiversity. This legislation, culminating with the Endangered Species Act of 1973, has been instrumental in defining methods for identifying and protecting endangered or threatened species and their habitats. Current legislation, however, assumes that the range of a protected species will stay constant over time. This assumption may no longer be valid, as the unprecedented increase in the number and concentration of greenhouse gases in the atmosphere has the potential to cause a global warming of 1.0–4.5°C and a sea-level rise (SLR) of 31–150 cm by the year 2100. Changes in climate of this magnitude are capable of causing shifts in the population structure and range of most animal species. This article examines the effects that SLR may have on the habitats of endangered and threatened species at three scales. At the regional scale 52 endangered or threatened plant and animal species were found to reside within 3 m of mean sea level in the coastal stages of the US Southeast. At the state level, the habitats of nine endangered or threatened animals that may be at risk from future SLR were identified. At the local level, a microscale analysis was conducted in the Cape Romain National Wildlife Refuge, South Carolina, USA, on the adverse effects that SLR may have on the habitats of the American alligator, brown pelican, loggerhead sea turtle, and wood stork. Prepared by the Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, Tennessee 37831, USA; managed by Martin Marietta Energy Systems. Inc. for the US Department of Energy under contract DE-AC05-84OR21400.  相似文献   

11.
An important tool in the evaluation of acidification damage to aquatic and terrestrial ecosystems is the critical load (CL), which represents the steady-state level of acidic deposition below which ecological damage would not be expected to occur, according to current scientific understanding. A deposition load intended to be protective of a specified resource condition at a particular point in time is generally called a target load (TL). The CL or TL for protection of aquatic biota is generally based on maintaining surface water acid neutralizing capacity (ANC) at an acceptable level. This study included calibration and application of the watershed model MAGIC (Model of Acidification of Groundwater in Catchments) to estimate the target sulfur (S) deposition load for the protection of aquatic resources at several future points in time in 66 generally acid-sensitive watersheds in the southern Blue Ridge province of North Carolina and two adjoining states. Potential future change in nitrogen leaching is not considered. Estimated TLs for S deposition ranged from zero (ecological objective not attainable by the specified point in time) to values many times greater than current S deposition depending on the selected site, ANC endpoint, and evaluation year. For some sites, one or more of the selected target ANC critical levels (0, 20, 50, 100μeq/L) could not be achieved by the year 2100 even if S deposition was reduced to zero and maintained at that level throughout the simulation. Many of these highly sensitive streams were simulated by the model to have had preindustrial ANC below some of these target values. For other sites, the watershed soils contained sufficiently large buffering capacity that even very high sustained levels of atmospheric S deposition would not reduce stream ANC below common damage thresholds.  相似文献   

12.
Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.  相似文献   

13.
Habitat restoration at a landscape scale is becoming increasingly important in environmental management. In this context, geographical information systems are well suited as they can store and integrate many of the abiotic and biotic criteria used to assess the ecological worth of a site. However, this capacity can be limited by the availability or suitability of spatial data sets. A classic example of the latter case is the National Soil Map of England and Wales, which groups soils of a varied nature into associations. Consequently the national soil map has proved to be a poor predictor of habitat suitability. Using polytomous logistic regression we put forward a method for separating soil associations into their constituent soils within the Chilterns Natural Area. This approach used soil association, aspect, slope and relative height as variables for this analysis. Whilst the model's performance is likely to have been limited by the accuracy of the soil association data set, a predictive accuracy of between 47 and 65% is sufficient to facilitate better targeting of habitat restoration when combined with other abiotic factors such as climate and topography.  相似文献   

14.
15.
Prior research has demonstrated the utility of metrics based on spatial velocity gradients to characterize and describe stream habitat, with higher gradients generally indicative of higher levels of physical heterogeneity and thus habitat quality. However, detailed velocity data needed to compute these metrics are difficult to obtain. Acoustic Doppler current profilers (ADCP) may be used to rapidly collect detailed representations of river velocity fields. Herein we demonstrate use of ADCP to obtain ecologically relevant data and compute associated metrics. Data were collected from four reaches of the Little Tallahatchie River in northern Mississippi. Sampled reaches were selected to observe velocity regimes associated with three distinctly different conditions: downstream from a major flow obstruction (a low weir), downstream from the apices of each of two bends, and within an extremely long, straight reach created by channelization. Three-dimensional velocity data sets from each site were used to compute metrics of habitat quality proposed by others. A habitat metric based on the presence of rotational flow in the vertical plane proved to be the best discriminator among conditions within the sampled reaches. Two of four habitat quality metrics computed from these measured velocities were greatest for the sharpest meander bend. ADCP hold great potential for study of riverine physical aquatic habitats, particularly at the reach scale. Additional work is needed to develop generally applicable field protocols and data reduction tools. Specifically, guidelines for ADCP settings and configuration appropriate for a range of riverine site conditions must be developed. Advances in instrumentation are needed to allow collection of information in closer proximity to the free surface and solid boundaries.  相似文献   

16.
After the June 1982 floods in Essex, Connecticut, USA, reseeding for stabilization of exposed pond bottoms and subsequent rebuilding of a dam on the Mill Pond, Essex, CT resulted in rooted, floating aquatic mats ofPhalaris arundinacea L. This required that the site be weed harvested to restore open water. It is suggested that the species not be used to temporarily stabilize pond bottom soils because of its great and unexpected adaptability to aquatic situations.  相似文献   

17.
18.
ABSTRACT: Benthic macroinvertebrate samples representing 151 taxa were collected in August 1995 to examine the linkage between land use, water quality, and aquatic biointegrity in seven tributaries of the Blackfoot River watershed, Montana. The tributaries represent silvicultural (timber harvesting), agricultural (irrigated alfalfa and hay and livestock grazing), and wilderness land uses. A 2.4 km (1.5 mile) reach of a recently restored tributary also was sampled for comparison with the other six sites. A geographic information system (GIS) was used to characterize the seven subwatersheds and estimate soil erosion, using the Modified Universal Soil Loss Equation, and sediment delivery. The wilderness stream had the highest aquatic biointegrity. Two agricultural streams had the largest estimated soil erosion and sediment delivery rates, the greatest habitat impairment from nonpoint source pollution, and the most impoverished macroinvertebrate communities. The silvicultural subwatersheds had greater rates of estimated soil erosion and sediment delivery and lower aquatic biointegrity than the wilderness reference site but evinced better conditions than the agricultural sites. A multiple-use (forestry, grazing, and wildlife management) watershed and the restored site ranked between the silvicultural and agricultural sites. This spectrum of land use and aquatic biointegrity illustrates both the challenges and opportunities that define watershed management.  相似文献   

19.
The critical loads approach is emerging as an attractive means for evaluating the effects of atmospheric deposition on sensitive terrestrial and aquatic ecosystems. Various approaches are available for modeling ecosystem responses to deposition and for estimating critical load values. These approaches include empirical and statistical relationships, steady-state and simple process models, and integrated-effects models. For any given ecosystem, the most technically sophisticated approach will not necessarily be the most appropriate for all applications; identification of the most useful approach depends upon the degree of accuracy needed and upon data and computational requirements, biogeochemical processes being modeled, approaches used for representing model results on regional bases, and desired degree of spatial and temporal resolution. Different approaches are characterized by different levels of uncertainty. If the limitations of individual approaches are known, the user can determine whether an approach provides a reasonable basis for decision making. Several options, including point maps, grid maps, and ecoregional maps, are available for presenting model results in a regional context. These are discussed using hypothetical examples for choosing populations and damage limits. The research described in this article has been funded by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through contract #68-C8-0006 with ManTech Environmental Technology, Inc., and Interagency Agreement #1824-B014-A7 with the U.S. Department of Energy and at Oak Ridge National Laboratory managed by Martin Marietta Energy Systems, Inc., under Contract DE-AC05-84OR21400 with the US Department of Energy. Environmental Sciences Division Publication No. 3904. It has been subjected to the agency’s peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

20.
Activated carbon (AC) has recently been shown to be effective in sequestering persistent organic pollutants (POPs) from aquatic sediments. Most studies have demonstrated significant reductions of POP concentrations in water and in aquatic organisms; however, limited data exist on the possibility of using AC to immobilize remaining POPs at terrestrial contaminated sites. Under greenhouse conditions, pumpkin ssp cv. Howden) were grown, and red wiggler worms () were exposed to an industrial contaminated soil containing a mixture of polychlorinated biphenyls (PCBs), i.e., Aroclors 1254 and 1260) treated with one of four concentrations of AC (0.2, 0.8, 3.1, and 12.5%) for 2 mo. The addition of AC to contaminated soils virtually eliminated the bioavailability of PCBs to the plant and invertebrate species. There were reductions in PCB concentrations of more than 67% in ssp and 95% in . These data suggest that AC could be included as part of comprehensive site closure strategy at PCB-contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号