首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composting and the application of compost to the soil follow the principle of recycling and sustainability. Compost can also have a positive effect on physical, chemical, and biological soil parameters. However, little is known about the origin, concentration, and transformation of persistent organic pollutants (POPs) in compost. We therefore compiled literature data on some priority POPs in compost and its main feedstock materials from more than 60 reports. Our data evaluation suggests the following findings. First, median concentrations of Sigma 16 polycyclic aromatic hydrocarbons (PAHs), Sigma 6 polychlorinated biphenyls (PCBs), and Sigma 17 polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were higher in green waste (1803, 15.6 microg/kg dry wt., and 2.5 ng international toxicity equivalent [I-TEQ]/kg dry wt.) than in organic household waste (635, 14.6 microg/kg dry wt., and 2.2 ng I-TEQ/kg dry wt.) and kitchen waste (not available [NA], 14.9 microg/kg dry wt., 0.4 ng I-TEQ/kg dry wt.). The POP concentrations in foliage were up to 12 times higher than in other feedstock materials. Second, in contrast, compost from organic household waste and green waste contained similar amounts of Sigma 16 PAHs, Sigma 6 PCBs, and Sigma 17 PCDD/Fs (1915, 39.8 microg/kg dry wt., and 9.5 ng I-TEQ/kg dry wt., and 1715, 30.6 microg/kg dry wt., and 8.5 ng I-TEQ/kg dry wt., respectively). Third, concentrations of three-ring PAHs were reduced during the composting process, whereas five- to six-ring PAHs and Sigma 6 PCBs increased by roughly a factor of two due to mass reduction during composting. Sigma 17 PCDD/Fs had accumulated by up to a factor of 14. Fourth, urban feedstock and compost had higher POP concentrations than rural material. Fifth, the highest concentrations of POPs were usually observed in summer samples. Finally, median compost concentrations of POPs were greater by up to one order of magnitude than in arable soils, as the primary recipients of compost, but were well within the range of many urban soils. In conclusion, this work provides a basis for the further improvement of composting and for future risk assessments of compost application.  相似文献   

2.
ABSTRACT: Aquatic organisms passively accumulate hydrophobic organic compounds, such as polychlorinated biphenyls, even when ambient water concentrations of the contaminant are below analytical detection limits. However, contaminant concentrations in tissue samples are subject to an inherently high level of variability due to differences in species, life stage, and gender bioconcentration potentials. Semipermeable membrane devices (SPMDs) were used to sample Aroclor 1254, a mixture of readily bioconcentrated polychlorinated biphenyls (PCBs), in a contaminated wetland near Flat Top, WV. The devices consisted of triolein, a lipid found in fish, enclosed in a polyethylene membrane. SPMDs were deployed in the water column and in direct contact with wetland sediments along a previously identified concentration gradient of PCBs. The devices were retrieved after a 25-day exposure period. Analytes were recovered by dialyzing the devices in nanograde hexane. Hexane dialysates were condensed and analyzed by gas chromatography. All deployed devices sequestered quantifiable amounts of Aroclor 1254. Water-column SPMDs accumulated PCBs far in excess of ambient water concentrations. The devices contacting sediments accumulated PCBs at all sites, though accumulated concentrations did not exceed concentrations in sediment. Patterns of PCB concentration in the devices corresponded to the identified gradient at the site. Results from the water-column SPMDs were used to estimate the concentration of the dissolved, bioavailable fraction of PCBs present in the water column. These concentrations ranged from 0.01 to 0.09 μg/L of bioavailable Aroclor 1254.  相似文献   

3.
Three promising phytoextracting perennial weed species [ L. (ox-eye daisy), L. (curly dock), and L. (Canada goldenrod)] were planted in monoculture plots at two polychlorinated biphenyl (PCB)-contaminated sites in southern Ontario and followed over 2 yr to investigate the effects of plant age, contaminant characteristics, and species-specific properties on PCB uptake and accumulation patterns in plant tissues. Results from this study indicate that, for each of these weed species, shoot contaminant concentrations and total biomass are dependent on plant age and life cycle (vegetative and reproductive stages), which affects the total amount of PCBs phytoextracted on a per-plant basis. Even at suboptimal planting densities of 3 to 5 plants m, all three weed species extracted a greater quantity of PCBs per unit area (4800-10,000 μg m) than the known PCB-accumulator L. ssp (cv Howden pumpkins) (1500-2100 μg m) at one of the two sites. Calculated PCB extractions based on theoretical optimal planting densities were significantly higher at both sites and illustrate the potential of these weeds for site remediation. This study also demonstrates that plants may accumulate PCBs along the stem length in a similar manner as plants.  相似文献   

4.
Habitat valuation methods were implemented to support remedial decisions for aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, TN, USA. The habitat valuation was undertaken for six contaminated sites: Contractor's Spoil Area, K-901-N Disposal Area, K-770 Scrapyard, K-1007-P1 pond, K-901 pond, and the Mitchell Branch stream. Four of these sites are within the industrial use area of ETTP and two are in the Black Oak Ridge Conservation Easement. These sites represent terrestrial and aquatic habitat for vertebrates, terrestrial habitat for plants, and aquatic habitat for benthic invertebrates. Current and potential future, no-action (no remediation) scenarios were evaluated primarily using existing information. Valuation metrics and scoring criteria were developed in a companion paper, this volume. The habitat valuation consists of extensive narratives, as well as scores for aspects of site use value, site rarity, and use value added from spatial context. Metrics for habitat value were expressed with respect to different spatial scales, depending on data availability. There was significant variation in habitat value among the six sites, among measures for different taxa at a single site, between measures of use and rarity at a single site, and among measures for particular taxa at a single site with respect to different spatial scales. Most sites had aspects of low, medium, and high habitat value. Few high scores for current use value were given. These include: wetland plant communities at all aquatic sites, Lepomid sunfish and waterbirds at 1007-P1 pond, and Lepomid sunfish and amphibians at K-901 pond. Aquatic sites create a high-value ecological corridor for waterbirds, and the Contractor's Spoil Area and possibly the K-901-N Disposal Site have areas that are part of a strong terrestrial ecological corridor. The only example of recent observations of rare species at these sites is the gray bat observed at the K-1007-P1 pond. Some aspects of habitat value are expected to improve under no-action scenarios at a few of the sites. Methods are applicable to other contaminated sites where sufficient ecological data are available for the site and region.  相似文献   

5.
The effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy’s Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy. High rates of primary production at upstream locations in EFPC were associated with alterations in both invertebrate and fish communities. Grazers represented >50% of the biomass of invertebrates and fish near the Y-12 Complex but <10% at downstream and reference sites. An index of epilithic periphyton production accounted for 95% of the site-to-site variation in biomass of grazing fish. Analyses of heavy metals in EFPC periphyton showed that concentrations of zinc, cadmium, copper and nickel in periphyton decreased exponentially with distance downstream from Y-12. Zinc uptake by periphyton was estimated to reduce the concentration of this metal in stream water ~60% over a 5-km reach of EFPC. Management options for mitigating eutrophy in EFPC include additional reductions in nutrient inputs and/or allowing streamside trees to grow and shade the stream. However, reducing periphyton growth may lead to greater downstream transport of contaminants while simultaneously causing higher concentrations of mercury and PCBs in fish at upstream sites.  相似文献   

6.
Total annual nutrient loads are a function of both watershed characteristics and the magnitude of nutrient mobilizing events. We investigated linkages among land cover, discharge and total phosphorus (TP) concentrations, and loads in 25 Kansas streams. Stream monitoring locations were selected from the Kansas Department of Health and Environment stream chemistry long-term monitoring network sites at or near U.S. Geological Survey stream gauges. We linked each sample with concurrent discharge data to improve our ability to estimate TP concentrations and loads across the full range of possible flow conditions. Median TP concentration was strongly linked (R 2 = 76%) to the presence of cropland in the riparian zones of the mostly perennial streams. At baseflow, discharge data did not improve prediction of TP, but at high flows discharge was strongly linked to concentration (a threshold response occurred). Our data suggest that on average 88% of the total load occurred during the 10% of the time with the greatest discharge. Modeled reductions in peak discharges, representing increased hydrologic retention, predicted greater decreases in total annual loads than reductions of ambient concentrations because high discharge and elevated phosphorus concentrations had multiplicative effects. No measure of land use provided significant predictive power for concentrations when discharge was elevated or for concentration rise rates under increasing discharge. These results suggest that reductions of baseflow concentrations of TP in streams without wastewater dischargers may be managed by reductions of cropland uses in the riparian corridor. Additional measures may be needed to manage TP annual loads, due to the large percentage of the TP load occurring during a few high-flow events each year.  相似文献   

7.
Surface soil (0-5 cm) samples from 43 sampling sites covering the entire urban territory of Bursa, an industrialized city in Turkey, were collected in each season and analyzed for 83 polychlorinated biphenyls (PCBs). The mean concentration of total PCBs (Σ83 PCBs) among all sites over the four seasons was 2121.51 pg/g dry weight (dw), with a range of 207.61-5461.95 pg/g dw. Total PCB concentrations in the soil samples collected near an industrial region were the highest in all seasons. In general, PCB patterns were dominated by low-chlorinated homologue groups (≤ 5 Cl groups at a 79% level). The predominant homologue group found in Bursa city soils was the penta-CBs (29.1%) followed by the tetra-CBs (25.5%) and tri-CBs (17.6%). A total of seven dioxin-like PCB congeners (CB-77, 81, 105, 114, 118, 123, and 126) were found in every sampling location and their mean total concentration for all locations and seasons was 259.27 pg/g dw, with a range of 7.02-1581.13 pg/g dw. A significant relationship (r = 0.77, p < 0.01) was found between the concentrations of dioxin-like PCBs and the seasonal average sum of PCB concentrations. A correlation between light congeners (相似文献   

8.
9.
Remediation of contaminated land and groundwater is of common international concern. The context and approach taken to the problem are, however, country-specific. A survey of remedial activity occurring within England and Wales over the period 1996-1999 was commissioned by the Environment Agency (for England and Wales) to establish a baseline against which future trends in remedial activity could be judged. This paper: explains the context of contaminated land and groundwater remediation in England and Wales (Britain); provides an overview of the 1996-1999 survey of remedial activity, discussing its findings within its legislative and institutional context; and, discusses the survey results of significance to the management of contaminated land and groundwater internationally. The survey obtained specific data from 367 remediated sites supplemented by general data from a further 1189 contaminated (not necessarily remediated) sites. The survey aimed to be, and was indicative of remediation practice, and did not seek to identify every remediation scheme operating. Previous anecdotal evidences were generally confirmed. Civil engineering-based techniques dominated and were used at 94% of sites with in situ techniques (predominantly vapour extraction-based) on 16% and ex situ on just 5%. Although disposal to landfill was dominant and occurred at over 80% of sites, integrated use of multiple techniques was common. Remediation was predominantly of soil (rather than water), development-based, designed to protect human health and reflected national development-led and 'suitable for use' policies. Lessons of international relevance from the survey and general British experience are drawn concerning remediation technique selection, regulatory and financial support of innovative remediation techniques and demonstration sites, competent use of risk-based approaches to allow pragmatic remediation and effective use of quality guidelines, need for effective guidance to highlight water quality issues, the necessity of post remediation monitoring to prove remediation effectiveness and the keeping of remediation databases.  相似文献   

10.
The half-lives of some persistent organic pollutants (POPs) in environmental compartments such as soil and air can be as long as decades. In spite of the hydrophobicity of many POPs, the literature contains reports of their uptake by, and translocation through, a variety of plants. Both these observations prompt the investigation of whether a vegetation-based environmental compartment such as compost contains significant residues of POPs. Previous reports imply that residues of technical chlordane will be found in compost. Due to its physicochemical properties, technical chlordane provides insights into the fate of POPs in the environment, which are not accessible through determinations of other pollutants in this group. Accordingly, we undertook the first comprehensive examination of technical chlordane residues in a variety of composts, specifically, 13 commercial and 39 municipal compost products, to both characterize and quantify the magnitude of this point source of contamination. Using chiral gas chromatography interfaced to ion trap mass spectrometry, the concentration and the compositional and enantiomeric profiles of chlordane components were determined. Of the 13 commercial products, 9 contained detectable chlordane concentrations, ranging from 4.7 to 292 microg/kg (dry wt.), while all 39 municipal products contained chlordane residues ranging from 13.9 to 415 microg/kg (dry wt.). The residue concentrations and profiles suggest possible feedstock sources for the chlordane in the finished compost product. The data also support the conclusion that some composts contribute to anthropogenic cycling of POPs through the biosphere.  相似文献   

11.
Ecological treatment systems can provide a sustainable, plant-based alternative to traditional wastewater treatment. One factor essential to the success of these systems is ensuring their ability to reduce coliform concentrations in wastewater. Wastewater is the primary source of fecal contamination in aquatic ecosystems, containing total and fecal coliforms on the order of 10(8)-10(10) and 10(7)-10(9) CFU L(-1), respectively. This study assessed the ability of an ecological treatment system to reduce concentrations of total coliforms and Escherichia coli from dairy wastewater. Low strength wastewater was pumped into the system during July of 2005 and high strength in September 2005. Wastewater passes through a series of anaerobic, aerobic, and clarifier reactors and wetland cells before exiting the system. Regardless of wastewater strength, average total coliform and E. coli concentrations were consistently reduced by at least 99% from influent to effluent, with the majority of the reduction (76%) occurring in the first two reactors. Relationships between internal concentrations of solids and coliforms indicated that increased reduction of solids may further reduce coliform concentrations. Although U.S. Environmental Protection Agency discharge requirements for E. coli were not always met, the substantial reductions achieved indicate that ecological treatment systems have the potential to successfully reduce coliforms in wastewater to meet discharge limits. The results from this study will be used to guide design and management of future ecological treatment systems, so that larger and more consistent coliform reductions can be achieved.  相似文献   

12.
Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphite-based solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation-SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation-SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.  相似文献   

13.
ABSTRACT: Concentrations of 18 hydrophobic chlorinated organic compounds in streambed sediments from 100 sites throughout New Jersey were examined to determine (1) which compounds were detected most frequently, (2) whether detection frequencies differed among selected drainage basins, and (3) whether concentrations differed significantly among selected drainage basins. Twelve drainage basins across New Jersey that contain a range of land-use patterns and population densities were selected to represent various types and degrees of development. To ensure an adequate number of samples for statistical comparison among drainage basins, the 12 selected basins were consolidated into seven drainage areas on the basis of similarities in land-use patterns and population densities. Additionally, data for three classes of chlorinated organic compounds in streambed sediments from 255 sites throughout New Jersey were examined to determine whether the presence of these compounds in streambed sediments is related to the type and degree of development within the drainage area of each sampling site. Chlorinated organic compounds detected most frequently within the seven representative drainage areas were DDT, DDE, DDD, chlordane, dieldrin, and PCBs. DDT, DDE, and DDD, which were the most widely distributed organic compounds, were detected in about 60 to 100 percent of the samples from all drainage areas but one (where the detection rate for these compounds was about 20 to 40 percent). Chiordane and dieldrin were detected in about 80 to 100 percent of samples from highly urbanized and populated drainage areas; detection frequencies for these compounds tended to be smaller in less developed and populated areas. PCBs were detected in about 40 to 85 percent of samples from all drainage areas; detection frequencies were highest in the most heavily developed and populated areas. Analysis of variance on rank-transformed organic compound concentrations normalized to sediment organic carbon content was used to evaluate differences in concentrations among the seven representative drainage areas. Chlordane and PCBs were the chlorinated organic compounds with the most highly elevated concentrations in streambed sediments across the State. Median normalized concentrations of all six of the most frequently detected chlorinated organic compounds were highest in the most heavily urbanized and populated drainage area and lowest in the less populated, predominantly agricultural or forested areas. Concentrations of DDT and DDE, however, did not differ significantly among most of the drainage areas. Concentrations of DDD, chlordane, dieldrin, and PCBs differed significantly among drainage areas. The highest median normalized concentrations were found in samples from the most heavily urbanized and populated areas, and the lowest were in samples from the least developed, most heavily forested area. Logistic regression was used to examine relations between the presence of hydrophobic chlorinated organic compounds in streambed sediments at specified concentrations and variables that characterize the type and degree of development within the drainage areas of 255 sites across New Jersey. The explanatory variables found most useful for predicting the presence of chlorinated organic compounds in streambed sediments include total population and amounts (in square kilometers) of various land-use categories. Logistic regression equations were developed to identify significant relations between population and amounts of specific land-use categories within drainage areas and the probability of detecting chlorinated organic contaminants in streambed sediments. These relations can be used to assist in the identification of geographic regions of primary concern for contamination of bed sediments by chlorinated organic compounds across the State.  相似文献   

14.
The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P < 0.1 for glyphosate and P < 0.01 for glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable.  相似文献   

15.
Before wood ash can be safely used as a fertilizer in forests, possible negative effects such as input of organic contaminants or remobilization of contaminants already stored in the soil must be investigated. The objective of this study was to examine the effects of wood ash application on concentrations, storage, and distribution of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in a Swiss forest soil. In May 1998, we added 8 Mg wood ash ha(-1) to a forest soil. We determined 20 PAHs and 14 PCBs in the organic layer, in the bulk mineral soil, and in soil material taken from preferential flow paths and from the matrix before and after the wood ash application. In the control plots, the concentrations of PAHs in the organic layer indicated moderate pollution (sum of 20 PAHs: 0.8-1.6 mg kg(-1)), but sum of PCB concentrations was high (21-48 microLg kg(-1)). The wood ash had high concentrations of PAHs (sum of 20 PAHs: 16.8 mg kg(-1)), but low concentrations of PCBs (sum of 14 PCBs: 3.4 microg kg(-1)). The wood ash application increased the PAH concentrations in the organic horizons up to sixfold. In contrast, PCB concentrations did not change in the Oa horizon and decreased up to one third in the Oi and Oe horizons. The decrease was probably caused by the mobilization of stored PCBs because of the high pH of the wood ash. This probably results in a higher mobility of dissolved organic matter, acting as PCB carrier. In the mineral soil, the preferential flow paths of the A horizon contained more PAHs and PCBs (+20 +/- 15% and +43 +/- 60%, respectively) than the matrix. This was particularly true for higher molecular weight compounds (molecular weight > 200 g mol(-1)). Below 50 cm depth, concentrations of PAHs and PCBs were smaller in the preferential flow paths, suggesting that in deeper depths, processes acting as sinks dominated over inputs in the preferential flow paths.  相似文献   

16.
Summary Past and current uncontrolled dumping, land application and accidental spills of recalcitrant, toxic environmental pollutants such as DDT and polychlorinated biphenyls (PCBs) pose a continued world-wide environmental threat, in particular to aquatic environments. Bioaccumulative contaminants are rapidly absorbed out of water-borne ambient environments and concentrated in the tissues of living aquatic organisms at concentrations that can range from thousands to millions of times greater than levels in the ambient environment. These absorbed levels are high enough to cause dysfunction in the organisms and potential harmful effects to humans. An established technology capable of remediating the low contaminant levels originating in the ambient aquatic environment does not currently exist. This paper proposes the macro-bioremediation process whereby certain fish and other macroscopic aquatic organisms could be used to filter, concentrate and remove bioaccumulative contaminants from polluted aqueous systems. Contaminant removal would involve the harvesting and subsequent restocking of aquatic organisms capable of bioaccumulating high contaminant levels in relatively short time periods. Tissues of harvested organisms could be composted with specialized fungus and bacteria to fully degrade the recalcitrant contaminants. The macro-bioremediation process could be used at numerous geographic locations for the restoration of natural aquatic environments, supplemental wetlands treatment and for waste-water, hazardous waste and sludge treatment augmentation.  相似文献   

17.
Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data were used to determine the processes controlling transport and fate of NO(3)(-) in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m(-1) in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO(3)(-) concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO(3)(-) was transported into the stream. At two of the five study sites, NO(3)(-) in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO(3)(-) would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO(3)(-) loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds.  相似文献   

18.
The explosive 2,4,6-trinitrotoluene (TNT) is a contaminant of soils and ground waters worldwide. To help alleviate such environmental contamination, we investigated a coupled abiotic-biotic treatment scheme for remediating TNT-contaminated soil in slurry solutions. Two types of soil were used (sandy and silt loam) to simulate different soils that might be found at actual sites. These soils were subsequently contaminated with 5000 mg kg(-1) TNT. Mineralization of TNT was initially optimized for minimum reactant use (Fe(3+) and H(2)O(2)) and maximum soil slurry percentage (percent solids) using modified Fenton reactions conducted in the absence of light followed by the addition of an uncharacterized aerobic biomass. Greater than 97% TNT degradation was observed under optimum reaction conditions for both soils. Using two optimum reactant concentrations for each soil, coupled abiotic-biotic reactions showed an increase in TNT mineralization, from 41 to 73% and 34 to 64% in the sandy soil (10 and 20% slurry, respectively, 1470 mM H(2)O(2)), and increases from 12 to 23% and 13 to 28% in the silt loam soil (5% slurry, 294 and 1470 mM H(2)O(2), respectively). These results show promise in the use of combined abiotic-biotic treatment processes for soils contaminated with high concentrations of TNT.  相似文献   

19.
Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.  相似文献   

20.
Environmental dispersion and transformation of mercury discharged from gold mining operations has been investigated in field and laboratory studies in order to provide better understanding of the degree of mercury (Hg) pollution and bioavailability in the Lake Victoria goldfields (LVGF) ecosystems. This paper reviews results already published elsewhere and presents additional data on Hg dynamics in the LVGF. Studies conducted at the Mugusu and Rwamagaza artisanal mines indicated different degrees of Hg contamination and dispersion in environmental matrices. Mercury concentration in contaminated river sediments near the Mugusu mine varied from 6.0 to 0.5 mg/kg on a dry weight basis. The highest Hg contamination levels (165-232 mg/kg) were associated with mine tailings at the Rwamagaza mine. Mercury concentrations in fish representing different dietary habits on the southwestern shore of Lake Victoria at the Nungwe Bay were very low (2-35 microg/kg) and thought to represent background levels. These and other results suggested that the use of Hg in gold extraction in the LVGF has not caused high Hg levels in lake fish. The study of Hg in lichens showed Parmelia lichen to be an effective bioindicator for atmospheric Hg contamination due to Hg emissions from gold-amalgam firing and purification operations. The Hg levels in the lichens around the Mugusu mine ranged from 3.1 to 0.1 microg/g; the highest levels were recorded in the lichens sampled close to gold-amalgam processing sites. The regional background level in the Parmelia lichen was 0.05-0.10 microg/g, with a mean level of 0.07 microg/g. Studies of Hg transformation in the mine tailings revealed unexpectedly high methylmercury (MeHg) levels in the tailings (629-710 ng/g), which indicated that oxidation and methylation of metallic Hg in the tailings occurred at significant levels under tropical conditions. Re-equilibration of the tailings with freshwater (FW) indicated the MeHg was firmly bound in the tailings and therefore very little MeHg was released to the water column (0.2-1.5 ng/L). The methylation of Hg in tropical loamy clay soil contaminated with HgCl(2) (5 mg Hg/kg) yielded MeHg concentrations of 11 and 14 ng/g when inundated with seawater and FW, respectively, for 4 weeks. Little MeHg was transferred from the soil to the equilibrated water (< or = 0.4 ng/L). Atmospheric exposure of the soil pre-inundated with FW resulted in net degradation of MeHg during the 1st week of exposure, followed by net production and accumulation of MeHg in the soil (up to 15.5 ng/g) during atmospheric desiccation. Mercury uptake by fish from the Hg(0)-contaminated aquatic sediment-tailings system in the aquarium experiment was found to be low, suggesting the low availability of MeHg for bioaccumulation in the system. These and other results provide useful insights into Hg transformation, mobility and bioavailability in tropical aquatic systems affected by Hg pollution from gold mining operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号