首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Loggerhead turtles nesting in the Mediterranean Sea exhibit remarkable genetic structuring. This paper tests the hypothesis that young loggerhead turtles from different rookeries do not distribute homogeneously among the major Mediterranean foraging grounds, due to a complex pattern of surface currents. We extracted long fragments of mitochondrial DNA from 275 stranded or bycaught juvenile turtles from six foraging grounds (Catalano-Balearic Sea, Algerian basin, Tyrrhenian Sea, Adriatic Sea, northern Ionian Sea and southern Levantine Sea). We used a Bayesian mixed-stock analysis to estimate the contributions from rookeries in the Mediterranean, the North-west Atlantic and Cape Verde to the studied foraging grounds. Differences were found in the relative contribution of juvenile turtles of Atlantic and Mediterranean origin to each foraging ground. A decreasing proportion of Atlantic juveniles was detected along the main surface current entering the Mediterranean, with a high prevalence of turtles from eastern Florida in the Algerian basin and lower numbers elsewhere. In regard to the turtles of Mediterranean origin, juveniles from Libya prevailed in central and western Mediterranean foraging grounds other than the Algerian basin. Conversely, the Adriatic Sea was characterised by a large presence of individuals from western Greece, while the southern Levantine Sea was inhabited by a heterogeneous mix of turtles from the eastern Mediterranean rookeries (Turkey, Lebanon and Israel). Overall, the distribution of juveniles may be related to surface circulation patterns in the Mediterranean and suggests that fisheries might have differential effects on each population depending on the overlap degree between foraging and fishing grounds.  相似文献   

2.
Sea turtle populations worldwide suffer from reduced survival of immatures and adults due to fishery bycatch. Unfortunately, information about the whereabouts of turtles outside the breeding habitat is scarce in most areas, hampering the development of spatially explicit conservation plans. In the Mediterranean, recoveries of adult females flipper-tagged on nesting beaches suggest that the Adriatic Sea and Gulf of Gabès are important foraging areas for adults, but such information could be heavily biased (observing and reporting bias). In order to obtain unbiased data, we satellite-tracked seven loggerhead sea turtles after they completed nesting in the largest known Mediterranean rookery (Bay of Laganas, Zakynthos, Greece). Three females settled in the north Adriatic Sea, one in the south Adriatic Sea and two in the Gulf of Gabès area at the completion of their post-nesting migrations (one individual did not occupy a distinct foraging area). The concordance of tracking results with information from recoveries of flipper-tagged turtles suggests that the north Adriatic Sea and the Gulf of Gabès represent key areas for female adult Mediterranean loggerhead sea turtles.  相似文献   

3.
The analysis of mitochondrial DNA in loggerhead sea turtles (Caretta caretta) from eight foraging grounds in the Mediterranean and the adjoining Atlantic revealed deep genetic structuring within the western Mediterranean. As a consequence, the foraging grounds off the North-African coast and the Gimnesies Islands are shown to be inhabited mainly by turtles of the Atlantic stocks, whereas the foraging grounds off the European shore of the western Mediterranean are shown to be inhabited mainly by turtles from the eastern Mediterranean rookeries. This structuring is explained by the pattern of sea surface currents and water masses and suggests that immature loggerhead sea turtles entering the western Mediterranean from the Atlantic and the eastern Mediterranean remain linked to particular water masses, with a limited exchange of turtles between water masses. As the north of the western Mediterranean comprises mostly individuals from the highly endangered eastern Mediterranean rookeries, conservation plans should make it a priority to reduce the mortality caused by incidental by-catch in these areas.  相似文献   

4.
Sea turtle tagging carried out in Italy in the period 1981–2006 resulted in 125 re-encounters of loggerhead turtles (Caretta caretta) after a mean of 2.5 years, from different marine areas in the Mediterranean. At first finding, turtles ranged 25–83 cm of curved carapace length. Data were analyzed according to size, area, habitat type, season, in order to provide indication of movement patterns. When integrated with other information, results indicate that: (1) a part of turtles in the oceanic stage show a nomad behavior with movements among different oceanic areas; (2) another part show fidelity to an oceanic area; (3) turtles in the neritic stage show fidelity to neritic areas, and once settled to one area, change to other neritic areas is unlikely; (4) nomad oceanic turtles are significantly larger than sedentary ones, and also larger than turtles found in neritic areas; it is hypothesized that these could be Atlantic turtles that eventually leave the Mediterranean; (5) ecological transition from oceanic to neritic habitats occurs at a wide range of sizes, and some turtles may have a very brief oceanic stage; (6) turtles in the oceanic stage are more likely to recruit to neritic areas close to their oceanic areas than to distant ones; (7) part of turtles from some Mediterranean nesting beaches might frequent a relatively limited area range, including both oceanic and neritic areas; (8) in most of the Mediterranean, latitudinal seasonal migrations are unlikely. A general model of movement patterns of loggerhead turtles in the Mediterranean is proposed.  相似文献   

5.
Previous studies of loggerhead sea turtles have concluded that drifting longlines were the main threat for immature specimens in the western Mediterranean, because immature loggerhead sea turtles mainly inhabit oceanic waters. However, recent aerial surveys have revealed large numbers of immature loggerhead sea turtles over the continental shelf of eastern mainland Spain, where turtles are exposed to neritic fishing gears but not to drifting longlines. We satellite-tracked seven loggerhead sea turtles (minimum straight carapace length (SCLmin) range: 36.5–55.0 cm) to assess whether the turtles in this region are vagrants from the adjoining oceanic regions or whether these loggerheads mostly inhabit the continental shelf. Satellite-tracking revealed that six of the tagged turtles avoided the oceanic realm and made extended use of the continental shelf, whereas only one individual could be considered a true vagrant as it avoided the continental shelf and primarily used the oceanic habitat. These results are in sharp contrast with those previously reported for immature loggerhead sea turtles of similar size from the south-western Mediterranean and fit well a relaxed ontogenic model that was recently proposed for loggerhead sea turtles in the central Mediterranean. Furthermore, these results demonstrate the vulnerability of loggerhead sea turtles of eastern mainland Spain to neritic fishing gears, as three of the seven turtles died and one was bycaught incidentally while being tracked over the continental shelf.  相似文献   

6.
Hannan LB  Roth JD  Ehrhart LM  Weishampel JF 《Ecology》2007,88(4):1053-1058
Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.  相似文献   

7.
Few long-term mark-recapture tagging datasets exist to estimate population parameters for loggerhead sea turtle (Caretta caretta) recovery units. Using a two-state open robust design model, we analyzed a 20-year (1990–2009) mark-recapture dataset from the Keewaydin Island loggerhead nesting assemblage off the southwest coast of Florida (USA) in the eastern Gulf of Mexico. For this analysis, 2,292 turtle encounters were evaluated, representing 841 individual nesting turtles. Survival was estimated at 0.73 (95 % CI 0.69–0.76). This estimate is comparable with survival estimates elsewhere in the Peninsular Florida subpopulation and is among the lowest estimates for the Northwest Atlantic loggerhead population. We documented no changes in remigration rates or clutch frequency over time. These are the first survival and remigration probabilities estimated for a loggerhead nesting assemblage in the eastern Gulf of Mexico.  相似文献   

8.
Previous studies have shown that loggerhead sea turtles (Caretta caretta), monitored by satellite telemetry, complete long-distance migration between the western and eastern Mediterranean basins following a seasonal pattern. This study investigated if these migration routes may be influenced by surface currents by superimposing the tracks of three loggerhead turtles (curved carapace length >55 cm), migrating from the western to the eastern Mediterranean basin, on Lagrangian data of current developed into pseudo-eulerian speed fields. The average travel speed of the turtles was 1.6 km h−1 and did not depend on the current speed or direction. We observed a connection between surface currents and the turtles’ migration routes, although not a conclusive one. These observations show that neritic stage loggerhead turtles conduct migration in two distinct alternate phases: the first characterized by high and constant speed of travel both when swimming with or against currents and the second typified by low travel speeds and a good concurrence between the trailed routes and the course of the currents. These two phases corresponded to two types of movements, one where the turtle migrates actively to reach a specific destination (either neritic foraging, wintering or nesting ground) and the other, where the turtle drifts with the mesoscale current and forages pelagically. It seemed thus, that the influence of currents on a turtle’s movements depends on the turtle’s momentary behaviour and location of residence.  相似文献   

9.
We re-sequenced 815 bp of the mtDNA of loggerhead turtles from a population nesting in Calabria (southern Italy), which was found recently. Non-invasive sampling was applied and information on deposition date and place was used to avoid possible resampling of nesting females. Among 38 nests laid by independent females, we found the common haplotype CC-A2.1 (57.9%) and two other haplotypes which have never been described in Mediterranean nesting grounds, CC-A20.1 (36.8%) and CC-A31.1 (5.3%). Calabria harbors the highest intra-population diversity among 11 Mediterranean nesting populations. Our findings narrow the gap between haplotypes recorded in feeding grounds and those found in nesting grounds. Analyses of population structure show a strong maternal isolation, with Calabria and east Turkey displaying far more diversity than expected considering their census size. These observations suggest that recurrent female founder effects from sources yet to be identified in the Atlantic or in the Mediterranean may have shaped the pattern of mtDNA diversity in this latter basin. Our results provide evidence that the Ionian Calabrian sites should be protected because of the high diversity found there. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
To study habitat use by loggerhead sea turtles in the Algerian Basin (western Mediterranean), ten juveniles (straight carapace length range: 39.0–63.3 cm) were tracked by satellite from March 2004 to September 2005. Swimming behaviour (characterized by speed of travel, time spent at the surface, and the cosine of turning angles) varied individually, but these differences were unrelated to body size. Despite individual differences in swimming behaviour, the ten immature loggerhead sea turtles spent most of their time in the oceanic waters of the Algerian Basin, although simulations indicated that the average tracking time (235.7 ± 98.7 SD days) was sufficiently long for them to leave the Algerian Basin and disperse through most of the Mediterranean. Furthermore, none of the ten turtles swam in any preferred direction, and their bearings were all randomly distributed. Finally, all them consistently avoided the continental shelf and did not migrate seasonally, as the average latitude, the average longitude, and the average distance of the population to the release point did not change seasonally. Seasonality also had only a weak influence in swimming behaviour, as the time spent at the surface during light hours was the only parameter that changed seasonally. We conclude that immature loggerhead sea turtles in the south of the western Mediterranean exhibit a strong fidelity to the Algerian Basin, where distribution is ruled mainly by the bathymetry, without any influence of seasonality. That fidelity to the Algerian Basin matches predictions based on genetic structuring and might result from a combination of factors: surface circulation patterns and habitat selection by the loggerhead sea turtles.  相似文献   

12.
Plasma testosterone levels were evaluated, by validating and using a commercially available testosterone enzyme immunoassay (EIA) as an indicator of the sex of immature loggerhead turtles (Caretta caretta) recovered along the western coast of the central Adriatic Sea between November 2011 and February 2012. Testosterone levels were measured in blood samples collected from 28 immature turtles kept in short-term maintenance at the Fondazione Cetacea Rescue Centre (Italy). Overall, plasma testosterone ranged between 229.3 and 2628.6 pg ml?1, suggesting that the EIA procedure is effective for determining androgen titers in immature loggerhead sea turtles. Analysis of the obtained data indicates an unbiased sex ratio supporting previous studies of juvenile loggerhead turtle sex ratios in the Mediterranean Sea. The present work can be considered a starting point for augmenting knowledge on the dynamics of juvenile loggerhead aggregations increasingly found in the northern-central Adriatic Sea and for promoting local management for conservation actions.  相似文献   

13.
Few data are available on the movements and behavior of immature Atlantic loggerhead sea turtles (Caretta caretta) from their seasonal neritic foraging grounds within the western north Atlantic. These waters provide developmental habitat for loggerheads originating from several western Atlantic nesting stocks. We examined the long-term movements of 23 immature loggerheads (16 wild-caught and seven headstart turtles) characterizing their seasonal distribution, habitat use, site fidelity, and the oceanographic conditions encountered during their migrations. We identified two movement strategies: (1) a seasonal shelf-constrained north–south migratory pattern; and (2) a year-round oceanic dispersal strategy where turtles travel in the Gulf Stream to the North Atlantic and their northern dispersal is limited by the 10–15°C isotherm. When sea surface temperatures dropped below 20°C, neritic turtles began a migration south of Cape Hatteras, North Carolina (USA) where they established fidelity to the waters between North Carolina’s Outer Banks and the western edge of the Gulf Stream along outer continental shelf. Two turtles traveled as far south as Florida. Several turtles returned to their seasonal foraging grounds during subsequent summers. Northern movements were associated with both increased sea surface temperature (>21°C) and increased primary productivity. Our results indicate strong seasonal and interannual philopatry to the waters of Virginia (summer foraging habitat) and North Carolina (winter habitat). We suggest that the waters of Virginia and North Carolina provide important seasonal habitat and serve as a seasonal migratory pathway for immature loggerhead sea turtles. North Carolina’s Cape Hatteras acts as a seasonal “migratory bottleneck” for this species; special management consideration should be given to this region. Six turtles spent time farther from the continental shelf. Three entered the Gulf Stream near Cape Hatteras, traveling in the current to the northwest Atlantic. Two of these turtles remained within an oceanic habitat from 1 to 3 years and were associated with mesoscale features and frontal systems. The ability of large benthic subadults to resume an oceanic lifestyle for extended periods indicates plasticity in habitat use and migratory strategies. Therefore, traditional life history models for loggerhead sea turtles should be reevaluated.  相似文献   

14.
Mitochondrial (mt) DNA control region sequences were analyzed for 249 Atlantic and Mediterranean loggerhead turtles (Carettacaretta Linnaeus, 1758) to elucidate nesting population structure and phylogeographic patterns. Ten haplotypes were resolved among individuals sampled between 1987 and 1993, from ten major loggerhead nesting areas in the region. Two distinct phylogenetic lineages were distinguished, separated by an average of 5.1% sequence divergence. Haplotype frequency comparisons between pairs of populations showed significant differentiation between most regional nesting aggregates and revealed six demographically independent groups, corresponding to nesting beaches from: (1) North Carolina, South Carolina, Georgia and northeast Florida, USA; (2) southern Florida, USA; (3) northwest Florida, USA; (4) Quintana Roo, Mexico; (5) Bahia, Brazil; and (6) Peloponnesus Island, Greece. The distribution of mtDNA haplotypes is consistent with a natal homing scenario, in which nesting colonies separated by a few hundred kilometers represent isolated reproductive aggregates. However, a strong exception to this pattern was observed in the first group defined by mtDNA data (North Carolina to northeast Florida), which included samples from four nesting locations spread across thousands of kilometers of coastline. These locations were characterized by a single haplotype in 104 out of 105 samples, providing inadequate resolution of population divisions. In view of the subdivisions observed elsewhere, we attribute the lack of differentiation between North Carolina and northeast Florida to recent colonization of these warm temperate coastlines (after the Wisconsin glaciation) not to ongoing gene flow among spatially distinct nesting locations. The relationships among observed haplotypes suggest a biogeographic scenario defined by climate, natal homing, and rare dispersal events. The redefined relationships among nesting aggregations in the western Atlantic region (southeastern USA and adjacent Mexico) prompt a reconsideration of management strategies for nesting populations and corresponding habitats in this region. Received: 28 October 1996 / Accepted: 24 October 1997  相似文献   

15.
Diet items and habitat constitute some of the environmental resources that may be used differently by individuals within a population. Long-term fidelity by individuals to particular resources exemplifies individual specialization, a phenomenon that is becoming increasingly recognized across a wide range of species. Less is understood about the consequences of such specialization. Here, we investigate the effects of differential foraging ground use on reproductive output in 183 loggerhead sea turtles (Caretta caretta) nesting at Wassaw Island, Georgia (31.89°N, 80.97°W), between 2004 and 2011 with resulting possible fitness effects. Stable isotope analysis was used to assign the adult female loggerheads to one of three foraging areas in the Northwest Atlantic Ocean. Our data indicate that foraging area preference influences the size, fecundity, and breeding periodicity of adult female loggerhead turtles. We also found that the proportion of turtles originating from each foraging area varied significantly among the years examined. The change in the number of nesting females across the years of the study was not a result of uniform change from all foraging areas. We develop a novel approach to assess differential contributions of various foraging aggregations to changes in abundance of a sea turtle nesting aggregation using stable isotopes. Our approach can provide an improved understanding of the influences on the causes of increasing or decreasing population trends and allow more effective monitoring for these threatened species and other highly migratory species.  相似文献   

16.
Until the turn of the century the inshore waters of North Carolina harbored populations of sea turtles large enough to support a commercial fishery. Based on a 4- to-5-year record of sighting reports by the public, interviews of recreational fishermen, and records kept by commercial fishermen the waters continue to provide important developmental habitats for loggerhead, green, and Kemp's ridley sea turtles. Leathertback and hawksbill sea turtles infrequently entered the inshore waters. Reports from the public and commercial fishermen indicated that sea turtles were present offshore North Carolina all year and were present in inshore waters April through December. Sea turtles were encountered most frequently in the Atlantic Ocean, but seasonal encounters in some inshore waters, such as Core and Pamlico Sounds, often were greater. In early May large numbers of leatherbacks were sighted in the ocean and moved northward along the beach. Reported sightings of leatherbacks declined markedly by late June. Based on incidental captures by commercial fishermen loggerhead turtles were the most numerous species in Pamlico and Core Sounds (80%), followed by green (15%) and Kemp's ridley sea turtles (5%). Most captured turtles were immature, and all were released alive. The abundance of immature sea turtles in North Carolina inshore waters serves to emphasize that southeast U.S. estuaries are important habitats for these threatened and endangered species. This recognition supported the decision of the U.S. National Marine Fisheries Service to extend the requirement for turtle excluder devices in shrimp trawls to inshore areas during the entire year, full implementation of these requirements was achieved by December 1994.  相似文献   

17.
Skeletochronological analysis of Kemp’s ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtle humeri and scleral ossicles was conducted to (1) describe the characteristics of scleral ossicles in these species, (2) determine whether the scleral ossicles contain annually deposited skeletal growth marks and (3) evaluate the potential for skeletochronological analysis of ossicles to obtain age data for size classes and species of sea turtles whose humeri exhibit prohibitive amounts of growth mark resorption. Humeri, entire eyes, and/or individual scleral ossicles were collected from stranded, dead sea turtles that were found along the coasts of Florida, North Carolina, Virginia, and Texas, USA. Samples were taken from a total of 77 neritic, juvenile Kemp’s ridleys ranging from 21.1 to 56.8 cm straightline carapace length (SCL), as well as two Kemp’s ridley hatchlings. For loggerheads, samples were obtained from 65 neritic juvenile and adult turtles ranging from 44.7 to 103.6 cm SCL and ten hatchlings. Examination of the ossicles revealed the presence of marks similar in appearance to those found in humeri. The number of marks in the ossicles and humeri of individual juvenile Kemp’s ridleys for which both structures were collected (n = 55) was equivalent, strongly indicating that the marks are annual. However, in large juvenile and adult loggerhead turtles (n = 65), some significant resorption of early growth marks was observed, suggesting that although ossicles might be useful for skeletochronological analysis of small juveniles, they may not provide a reasonable alternative to humeri for obtaining age estimates for older loggerhead sea turtles.  相似文献   

18.
To evaluate the effects of organized turtle watches on female sea turtles and their eggs, we quantified nesting behavior and hatchling production of loggerhead turtles ( Caretta caretta ) in south Brevard Country, Florida, U.S.A. We compared the duration of five phases of nesting behavior, the directness of the turtle's return path, rate of travel during return crawl, hatching success, and hatchling emergence success between experimental and control turtles. Experimental turtles nested while observed by an organized turtle watch group consisting of at least 15 people; control turtles were not observed by a turtle watch group. Experimental turtles spent significantly less time camouflaging nest sites than did control turtles. The duration of the other four phases of nesting behavior were not significantly different between the two groups. Experimental turtles also traveled less-direct paths during return crawls, although their rates of travel were not significantly different from those of control turtles. Hatching success and hatchling emergence success were not significantly different between experimental and control turtle nests in either year. Although turtle watch groups influenced nesting behavior, they were not found to be detrimental to hatchling production. Florida's turtle watch program is a means for garnering public support for sea turtle conservation through education, and it should continue.  相似文献   

19.
Sex ratios are a crucial parameter for evaluating population viability. In species with complex life history patterns and temperature sex determination mechanisms, such as the loggerhead turtle (Caretta caretta), sex ratios may vary within a population and among populations. In the Mediterranean, juvenile sex ratios appear to not differ significantly from 1:1, although estimates for hatchling sex ratios are highly female biased. The immigration of males from the Atlantic has been suggested as a possible cause of such variation. Here, we present results of a multi-year investigation (2000–2011) on the sex ratios of loggerhead turtles foraging along the south Tyrrhenian coast, Western Mediterranean, with the aim of providing a better understanding of the potentially underlying forces that drive regional and age-dependent differences in sex ratios. Sex was determined through visual examination of the gonads in 271 dead turtles (curved carapace length range 29.5–89 cm). A fragment of the mitochondrial DNA control region was sequenced from 61 specimens to characterise the demographic composition of this foraging assemblage by applying a many-to-many mixed stock analysis approach. No significant association was found between sex ratios and years or size classes, although the largest size was male biased. Juvenile sex ratio was 1.56:1, which was different from an even sex ratio but still less female biased than hatchling sex ratios from Mediterranean beaches. Results of the mixed stock analysis indicate that juvenile sex ratios in the Mediterranean are largely unaffected by immigration of Atlantic individuals into the basin, as previously suggested. Continued long-term monitoring of juvenile sex ratios is necessary to detect biologically significant sex ratio shifts in the Mediterranean loggerhead turtle population.  相似文献   

20.
Ten adult male loggerhead sea turtles, captured by trawlers or dip nets, were satellite-tracked from a neritic foraging ground in the Mediterranean in order to investigate adult spatio-temporal distribution and breeding migration. Five individuals migrated to potential breeding sites in Libya and one to Greece. The results complement previous studies and show that: (1) the Tunisian shelf may be more important for turtles from Libyan rookeries than previously thought; (2) male tracks corroborate a conservation hotspot previously identified for juveniles; (3) the north African coast represents a preferred migratory corridor, unless open sea routes are more direct; (4) adult males may exhibit high fidelity to relatively small areas, without evident seasonal differences; (5) adults home ranges were smaller and more neritic than juveniles frequenting the same area; (6) males may frequent multiple courtship areas; (7) the average remigration interval of males frequenting this region is longer than 1 year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号