首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The evaluation method of biomass carbon ratio of polymer composite samples including organic and inorganic carbons individually was investigated. Biodegradable plastics and biobased plastics can have their mechanical properties improved by combining with inorganic fillers. Polymer composites consisting of biodegradable plastics and carbonate were prepared by two different methods. Poly(lactic acid) (PLA) composite was prepared by synthesis from l-lactide with catalyst and calcium carbonate (CaCO3) powders from lime. Poly(butylene succinate) (PBS) composite was prepared by hot-pressing the mixture of PBS powder and CaCO3 powders from oyster shells. The mechanical properties of composite samples were investigated by a tensile test and a compression test using an Instron type mechanical tester. Tensile test with a dumbbell shape specimen was performed for PBS composite samples and compression test with a column shape specimen for PLA composite samples. Strength, elastic modulus and fracture strain were obtained from the above tests. Biomass carbon ratio is regulated in the American Standards for Testing and Materials (ASTM). In ASTM standards on biomass carbon ratio, it is required that carbon atoms from carbonates, such as CaCO3, are omitted. Biomass carbon ratio was evaluated by ratio of 14C to 12C in the samples using Accelerator Mass Spectrometry (AMS). The effect of pretreatment, such as oxidation temperature and reaction by acid, on results of biomass carbon ratio was investigated. Mechanical properties decrease with increasing CaCO3 content. The possibility of an evaluation method of biomass carbon ratio of materials including organic and inorganic carbons was shown.  相似文献   

2.
Biodegradable nanocomposites based on poly(butylene succinate)/organoclay   总被引:2,自引:0,他引:2  
In this work, we try to incorporate the inorganic system into the biodegradable polymers to compose an organic/inorganic polymer hybrid. Various nanocomposites of poly(butylene succinates) (PBS) with different ratios of organically modified layered silicates (OMLS) prepared by solution blending were investigated. The OMLS used for the preparation of nanocomposites were functionalized ammonium salts modified montmorillonite. The effects of OMLS on the nanocomposites were investigated by XRD, TEM, DMA and TGA in the aspect of the d-spacing of clay, mechanical and thermal properties. Interestingly, all these nanocomposites exhibited improved properties when compared with the pristine PBS sample. XRD indicates that the layers of clay were intercalated by the modifiers, and the interlayer distance of organoclay in the nanocomposites could be extended to about 29.4 Å. Moreover, the thermal stability of the nanocomposites was enhanced by the addition of organoclay via TGA study, closely related to the organoclay content in the PBS matrix. DMA data shows that the storage and loss moduli were concurrently enhanced by the addition of organoclay as compared to the pristine PBS sample. Moreover, the glass transition temperatures also increased about 5 to 20 °C (from DMA, peak of tanδ) for the various organoclay-containing samples. The enhanced mechanical and thermal properties can be achieved from these organoclay modified-nanocomposites.  相似文献   

3.
Throughout the utilization of recycled materials, weathering factors such as humidity, gas composition and temperature have the potential to change the material properties and enhance the release of inorganic contaminants. In this research, the effects of weathering factors on recycled gravel materials for roadbeds were evaluated by applying three kinds of accelerating exposure tests: freezing–melting cycle test, carbonation test, and dry–humid cycle test. The effects of exposure tests were determined by X-ray diffraction (XRD) analysis and serial batch leaching test, making it possible to identify the change in release mechanisms. Sixteen elements, mainly metals, were investigated. Tested samples were molten slag from municipal solid waste, molten slag from automobile shredded residue, and crushed natural stone.After the exposure tests, the increase of cumulative release in the leaching test was generally less than 2.0 times that of the samples without the exposure test. Among the three test conditions, freezing–melting showed a slightly higher effect of enhancing the release of constituents. XRD analysis showed no change in chemical species. From these results, it was determined that the stony samples were stable enough so that their properties were not significantly changed by the exposure tests.  相似文献   

4.
This study investigates the processability and biodegradability of composite bioplastic materials. Biocomposites were processed using twin-screw compounding of the bioplastic poly(butylene succinate) (PBS) with bio-based fillers derived from co-products of biofuel production. An extensive biodegradability evaluation was conducted on each biocomposite material, as well as the base materials, using respirometric testing to analyze the conversion of organic carbon into carbon dioxide. This evaluation revealed that the presence of meal-based fillers in the biocomposites increased the rate of biodegradation of the matrix polymer, degrading at a faster pace than both the pure PBS polymer and the switchgrass (SG) composite. This degradation was further confirmed using FT-IR and thermal analysis of the material structure before and after biodegradation. The increased biodegradation rate is attributed to the high concentration of proteins in the meal-based composites, which enhanced the hydrolytic biodegradation of the material and facilitated micro-organism growth. The SG-based composite degraded slower than the pure polymer due to its lignin content, which degrades via a different mechanism than the polymer, and slowed the biodegradation process.  相似文献   

5.
Fly ash of mineral coal as ceramic tiles raw material   总被引:1,自引:0,他引:1  
The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.  相似文献   

6.
The use of composites made from non-biodegradable conventional plastic materials (e.g., polypropylene, PP) is creating global environmental concern. Biodegradable plastics such as poly(butylene succinate) (PBS) are sought after to reduce plastic waste accumulation. Unfortunately, these types of plastics are very costly; therefore, natural lignocellulosic fibers are incorporated to reduce the cost. Kenaf fibers are also incorporated into PP and PBS for reinforcing purposes and they have low densities, high specific properties and renewable sourcing. However without good compatibilization, the interfacial adhesion between the matrix and the fibers is poor due to differences in polarity between the two materials. Maleic anhydride-grafted compatibilizers may be introduced into the system to improve the matrix-fiber interactions. The overall mechanical, thermal and water absorption properties of PP and PBS composites prepared with 30 vol.% short kenaf fibers (KFs) using a twin-screw extruder were being investigated in this study. The flexural properties for both types of composites were enhanced by the addition of compatibilizer, with improvements of 56 and 16 % in flexural strength for the PP/KF and PBS/KF composites, respectively. Good matrix-fiber adhesion was also observed by scanning electron microscopy. However, the thermal stability of the PBS/KF composites was lower than that of the PP/KF composites. This result was confirmed by both DSC and TGA thermal analysis tests. The water absorption at equilibrium of a PBS composite filled with KFs is inherently lower than of a PP/KF composite because the water molecules more readily penetrate the PP composites through existing voids between the fibers and the matrix. Based on this research, it can be concluded that PBS/KF composites are good candidates for replacing PP/KF composites in applications whereby biodegradability is essential and no extreme thermal and moisture exposures are required.  相似文献   

7.
This research paper provides a brief discussion about the relevance of third generation biodiesel co-products diversification. This diversification can be performed through the utilization of residual microalgal biomass (RMB) after oil extraction process. The present work analyses the use of RMB as potential filler for biocomposite production by means of understanding the chemical composition, the thermal stability as well as the protein content of RMB. Thermogravimetric analysis revealed the processing window of the RMB for biocomposite production and its dependence on its purity, especially on residual fat content. Biocomposites of RMB and poly(butylene succinate) (PBS) were prepared by melting processing technique using extrusion followed by injection-molding. Tensile, flexural and impact properties of the processed samples were evaluated. Scanning electron microscopy of fractured sections of the biocomposites was also used to examine the dispersion of RMB in PBS matrix. Finally, this study shows a competitive alternative to produce PBS-RMB biocomposites by replacing PBS by RMB in the range between 20 and 30 %. However, further studies are necessary to improve the compatibility of RMB with PBS to obtain competitive mechanical properties, compared to neat materials through, for instance, block co-polymers.  相似文献   

8.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

9.
Risk assessment of two sections (I and II) of an old landfill (ALH) in Styria (Austria) in terms of reactivity of waste organic matter and the related potential of gaseous emissions was performed using conventional parameters and innovative tools to verify their effectiveness in practice. The ecological survey of the established vegetation at the landfill surface (plant sociological relevés) indicated no relevant emissions over a longer period of time. Statistical evaluation of conventional parameters reveals that dissolved organic carbon (DOC), respiration activity (RA4), loss of ignition (LOI) and total inorganic carbon (TIC) mostly influence the variability of the gas generation sum (GS21). According to Fourier Transform Infrared (FT-IR) spectral data and the results of the classification model the reactivity potential of the investigated sections is very low which is in accordance with the results of plant sociological relevés and biological tests. The interpretation of specific regions in the FT-IR spectra was changed and adapted to material characteristics. Contrary to mechanically–biologically treated (MBT) materials, where strong aliphatic methylene bands indicate reactivity, they are rather assigned to the CH vibrations of plastics in old landfill materials. This assumption was confirmed by thermal analysis and the characteristic heat flow profile of plastics containing landfill samples. Therefore organic carbon contents are relatively high compared to other stable landfills as shown by a prediction model for TOC contents based on heat flow profiles and partial least squares regression (PLS-R). The stability of the landfill samples, expressed by the relation of CO2 release and enthalpies, was compared to unreactive landfills, archeological samples, earthlike materials and hardly degradable organic matter. Due to the material composition and the aging process the landfill samples are located between hardly degradable, but easily combustible materials and thermally resistant materials with acquired stability.  相似文献   

10.
A field study was developed in a new landfill for refuse from construction and demolition (C&D) material recovery plants of small size (4 Ha.) in Europe, with the aim of evaluating the liquid and gas emissions in this type of facility at a large scale. It included characterization of the materials, monitoring leachate and gas quantity and composition. Besides thermometers, piezometers and sampling ports were placed in several points within the waste. This paper presents the data obtained for five years of the landfill life. The materials disposed were mainly made up of wood and concrete, similar to other C&D debris sites, but the amount of gypsum drywall (below 3% of the waste) was significantly smaller than other available studies, where percentages above 20% had been reported. Leachate contained typical C&D pollutants, such as different inorganic ions and metals, some of which exceeded other values reported in the literature (conductivity, ammonium, lead and arsenic). The small net precipitation in the area and the leachate recirculation into the landfill surface help explain these higher concentrations, thus highlighting the impact of liquid to solid (L/S) ratio on leachate characteristics. In contrast to previous studies, neither odor nuisances nor significant landfill gas over the surface were detected. However, gas samples taken from the landfill inside revealed sulfate reducing and methanogenic activity.  相似文献   

11.
The biobased contents of raw materials such as starches, sugar, chitin, or wood powders for biomass plastics were measured using Accelerator Mass Spectrometry (AMS) based on ASTM D6866. AMS measures the isotope carbon ratio of 14C to 12C and 13C in graphite derived from sample powders. The biobased contents of starches, sugar or chitin were almost 100% which means that they are fully biobased. The biobased contents of the wood powders were over 140% due to the effect of the post 1950s 14C injection due to nuclear testing. Poly(ε-caprolactone) (PCL) composite samples were prepared using the polymerization and direct molding method. The starting compound was the ε-caprolactone monomer liquid combined with cellulose and inorganic fillers using aluminum triflate as a catalyst at 80 °C for 6 or 24 h. PCL cylinder-shaped composite samples with a homogeneously dispersed cellulose filler were prepared with Mn = 4,600 (Mw/Mn = 2.9). The biobased content of the PCL composite with 50 wt% cellulose filler (51.67%) measured using AMS was slightly higher than the carbon ratio of cellulose in the starting powder samples (41.3 mol%). This is due to the higher biobased content (112.70%) of the cellulose filler used in this study. The biobased content of the polymer composite powders by AMS was found not to be affected by the presence of inorganic fillers, such as talc.  相似文献   

12.
Ecofriendly fully bio-composites based on polyamide 11 (PA11) and lignin have been prepared on the entire concentration range using a twin-screw extruder. In this work, PA11 was blended with lignin by direct extrusion technology without any chemical pre- or in-situ- modifications or physical pretreatments. The presence of various organic and inorganic impurities in the selected technical lignin have been maintained. The incorporation of this cheap renewable material from biomass in bio-based PA11 was inspected by an array of characterization tools. Also, the effect of the presence of lignin on the morphology and on the mechanical properties of the resulting materials was examined. Finally, in-situ investigation of structural evolution in PA11 induced by the presence of lignin was analyzed by Fast Scanning Chip Calorimetry.  相似文献   

13.
Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.  相似文献   

14.
In this work, the results obtained in catalytic pyrolysis of three plastic waste streams which are the rejects of an industrial packing wastes sorting plant are presented. The samples have been pyrolysed in a 3.5 dm(3) reactor under semi-batch conditions at 440 °C for 30 min in nitrogen atmosphere. Commercial ZSM-5 zeolite has been used as catalyst in liquid phase contact. In every case, high HHV gases and liquids which can be useful as fuels or source of chemicals are obtained. A solid fraction composed of the inorganic material contained in the raw materials and some char formed in the pyrolysis process is also obtained. The zeolite has shown to be very effective to produce liquids with great aromatics content and C3-C4 fraction rich gases, even though the raw material was mainly composed of polyolefins. The characteristics of the pyrolysis products as well as the effect of the catalyst vary depending on the composition of the raw material. When paper rich samples are pyrolysed, ZSM-5 zeolite increases water production and reduces CO and CO(2) generation. If stepwise pyrolysis is applied to such sample, the aqueous liquid phase can be separated from the organic liquid fraction in a first low temperature step.  相似文献   

15.
Poly(butylene succinate) (PBS) was melt blended with glycerol based polyesters (PGS) synthesized from pure and technical glycerol aiming to improve the impact strength of PBS. It was found that after addition of 30 wt% PGS to PBS its impact strength was significantly increased by 344% (from 31.9 to 110 J/m) and its elongation at break was maintained at 220%. Infrared spectra of the blends showed the presence of hydroxyl groups from the PGS phase suggesting that hydrogen bonding between the phases could be responsible for a good stress transfer and an efficient toughening in the PBS/PGS blends. Scanning electron microscopy imaging showed a good dispersion of PGS phase into PBS with a PGS particle size of 10 μm and less and no agglomeration. Addition of PGS to PBS was shown to be an effective strategy for improvement of PBS impact resistance without serious detrimental effects on its thermal and rheological properties.  相似文献   

16.
Several new biodegradable polymer materials have recently come onto the global market. Mostly the results on degradation kinetic studies are presented. This paper suggests using one of the tests to estimate the impact of polymer packaging material on sea life. The microorganism chosen was Anabaena variabilis (identified in many waters, including those of the Baltic Sea, especially in the Gulf of Gdańsk and Puck Bay; this cyanobacterium has a tendency to move with deep-sea waters causing algal blooms that upset the ecological balance of the marine environment [1]). The chosen polymer materials were polycaprolactone modified with thermoplastic starch (PCL/TPS > 85%) or with calcium carbonate (60% PCL/40% CaCO3). They were incubated in seawater in the presence of A. variabilis. The chlorophyll a content was determined as the criterion of cyanobacterial growth in the presence of the tested polymers. The polymer surface and colour changes in the cyanobacterium culture were recorded photographically. The experimental results indicate that the addition of polymer samples to the cyanobacterium culture affects its biological balance. During the experiment in seawater, cyanobacteria adhered to the polymer surfaces and their growth was stimulated to different degree by the polymers. Thus, the suggested test differentiate the behaviour of both materials studied. Cyanobacterial growth was lower in the presence of PCL modified with calcium carbonate than in the presence PCL/TPS blend.  相似文献   

17.
Due to their low permeability, geosynthetic clay liners (GCLs) and compacted clay liners (CCLs) are the main materials used in waste disposal landfills. The hydraulic conductivity of GCLs and CCLs is closely related to the chemistry of the permeant fluid. In this study, the effect on the hydraulic conductivity of clays of five different inorganic salt solutions as permeant fluid was experimentally investigated. For this purpose, NaCl, NH(4)Cl, KCl, CaCl(2), and FeCl( 3) inorganic salt solutions were used at concentrations of 0.01, 0.10, 0.25, 0.50, 0.75 and 1 M. Laboratory hydraulic conductivity tests were conducted on low plasticity (CL) and high plasticity (CH) compacted raw clays. The change in electrical conductivity and pH values of the clay samples with inorganic salt solutions were also determined. The experimental test results indicated that the effect of inorganic salt solutions on CL clay was different from that on CH clay. The hydraulic conductivity was found to increase for CH clay when the salt concentrations increased whereas when the salt concentrations were increased, the hydraulic conductivity decreased for the CL clay.  相似文献   

18.
In Eritrea, farmers have applied landfill materials as fertiliser to their fields for several decades. A sampling scheme in the landfill site of Asmara and selected farmers' fields was carried out to investigate the benefits and risks of using landfill materials for agriculture. Soil samples were collected from farmers' fields (7 samples) and from the Asmara landfill site (12 samples). The samples were analysed for major plant nutrients, heavy metals (Cd, Cr, Cu, Pb, Ni, Hg and Zn), and some physical properties. Nearly 65% (by weight) of the total landfill material mined from the landfill site constituted waste fractions of various substances. The remaining 35% was composed of soil-like materials, which are apparently used to fertilize agricultural soils. The average organic matter, total nitrogen, and available phosphorus contents of soils with landfill material measured 2.4%, 0.13%, and 45 mg kg(-1), respectively. However, soils without landfill material consisted of 1.1 % organic matter, 0.04% total N, and <40 mg kg(-1) of available P. Except for Hg, all the other heavy metals in the landfill site showed values above the permissible limits. In particular, the average concentrations of Cu (913 mg kg(-1)) and Pb (598 mg kg(-1)) in the landfill site were nine-fold and four-fold greater than the allowable limits, respectively. It is, therefore, suggested that composting fresh organic wastes should be considered and tested as an alternative material for fertilising agricultural soils and to maintain the quality of the environment.  相似文献   

19.
A series of organic–inorganic conducting nano polymer-matrix composite cation-exchanger have been synthesized via sol–gel method and characterized through FTIR, XRD, TGA-DTA, SEM, and TEM studies. The structural studies confirm the semi-crystalline nature of the material but the morphology of the exchanger gets changed after incorporation of inorganic moiety. The particle size of the nano-composite was found to be 19.2 nm. The observed band gap for the different samples was found to be in the range of 3.70–4.61 eV which shows that nano-composite material covers semiconducting range but the resistivity of samples is highly dependent on the percentage of inorganic part in the composite. Further the oxidative degradation of the polymer backbone begins after the removal of trapped water successively followed by dopant and low molecular weight oligomers. During the antimicrobial screening, the nano-composite was found to be active against different strains of bacteria and fungi. Gel electrophoresis and molecular docking studies were carried out to check the interaction and mechanism of inhibition of microbial growth, respectively by studying the effect of the nano-composite with DNA-Topoisomerase-1.  相似文献   

20.
Journal of Polymers and the Environment - Kaolin clay (KN) was employed as an inorganic filler to modify a cross-linked chitosan-glyoxal as Schiff’s-based chitosan composite derivative...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号