首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study focuses on characterising the risk of exposure to volatile organic compounds (VOCs) by means of inhalation in people living in the vicinity of the largest chemical production site in the Mediterranean area. Eighty-six VOCs were initially selected for this study based on their adverse environmental and health effects. The monitoring campaign was conducted for 276 days in three different locations around the chemical site. The analytical method used for the characterisation was based on European standard method EN-14662-2, which consists of the active sampling of air for 24 h in charcoal tubes, followed by extraction with carbon disulphide and GC-MS analysis. Forty-four VOCs with toxicological data available concerning their carcinogenic and non-carcinogenic health effects were quantified during the monitoring campaign. None of the quantified VOCs showed average concentrations exceeding their chronic reference concentrations and, therefore, no non-carcinogenic health effects are expected as a result of this exposure. However, the global average cancer risk due to VOC exposure in the area (3.3 × 10− 4) was found to be above the values recommended by the WHO and USEPA.The influence of the analytical method was also evaluated by comparing cancer risk estimates using a thermal desorption (TD) method based on method EN-14662-1. The results of the 24-h samples for the solvent extraction method were compared with the average of 12 daily samples of 2-h for the TD method for 24 sampling days. Although the global estimated lifetime cancer risk was statistically comparable for both methods, some differences were found in individual VOC risks.To our knowledge, this is the first study that estimates the carcinogenic and non-carcinogenic risks posed by the inhalation of VOCs in people living near a chemical site of this size, and compares the estimated cancer risk obtained using two different standard analytical methods.  相似文献   

2.
The recently developed concepts of aggregate risk and cumulative risk rectify two limitations associated with the classical risk assessment paradigm established in the early 1980s. Aggregate exposure denotes the amount of one pollutant available at the biological exchange boundaries from multiple routes of exposure. Cumulative risk assessment is defined as an assessment of risk from the accumulation of a common toxic effect from all routes of exposure to multiple chemicals sharing a common mechanism of toxicity. Thus, cumulative risk constitutes an improvement over the classical risk paradigm, which treats exposures from multiple routes as independent events associated with each specific route. Risk assessors formulate complex models and identify many realistic scenarios of exposure that enable them to estimate risks from exposures to multiple pollutants and multiple routes. The increase in complexity of the risk assessment process is likely to increase risk uncertainty. Despite evidence that scenario and model uncertainty contribute to the overall uncertainty of cumulative risk estimates, present uncertainty analysis of risk estimates accounts only for parameter uncertainty and excludes model and scenario uncertainties. This paper provides a synopsis of the risk assessment evolution and associated uncertainty analysis methods. This evolution leads to the concept of the scenario-model-parameter (SW) cumulative risk uncertainty analysis method. The SMP uncertainty analysis is a multiple step procedure that assesses uncertainty associated with the use of judiciously selected scenarios and models of exposure and risk. Ultimately, the SMP uncertainty analysis method compares risk uncertainty estimates determined using all three sources of uncertainty with conventional risk uncertainty estimates obtained using only the parameter source. An example of applying the SMP uncertainty analysis to cumulative risk estimates from exposures to two pesticides indicates that inclusion of scenario and model sources.  相似文献   

3.
Understanding the public health implications of chemical contamination of drinking water is important for societies and their decision-makers. The possible population health impacts associated with exposure to disinfection by-products (DBPs) are of particular interest due to their potential carcinogenicity and their widespread occurrence as a result of treatments employed to control waterborne infectious disease.We searched the literature for studies that have attempted quantitatively to assess population health impacts and health risks associated with exposure to DBPs in drinking water. We summarised and evaluated these assessments in terms of their objectives, methods, treatment of uncertainties, and interpretation and communication of results.In total we identified 40 studies matching our search criteria. The vast majority of studies presented estimates of generic cancer and non-cancer risks based on toxicological data and methods that were designed with regulatory, health-protective purposes in mind, and therefore presented imprecise and biased estimates of health impacts. Many studies insufficiently addressed the numerous challenges to DBP risk assessment, failing to evaluate the evidence for a causal relationship, not appropriately addressing the complex nature of DBP occurrence as a mixture of chemicals, not adequately characterising exposure in space and time, not defining specific health outcomes, not accounting for characteristics of target populations, and not balancing potential risks of DBPs against the health benefits related with drinking water disinfection. Uncertainties were often poorly explained or insufficiently accounted for, and important limitations of data and methods frequently not discussed. Grave conceptual and methodological limitations in study design, as well as erroneous use of available dose–response data, seriously impede the extent to which many of these assessments contribute to understanding the public health implications of exposure to DBPs. In some cases, assessment results may cause unwarranted alarm among the public and potentially lead to poor decisions being made in sourcing, treatment, and provision of drinking water. We recommend that the assessment of public health impacts of DBPs should be viewed as a means of answering real world policy questions relating to drinking water quality, including microbial contaminants; that they should be conducted using the most appropriate and up-to-date data and methods, and that associated uncertainties and limitations should be accounted for using quantitative methods where appropriate.  相似文献   

4.
High spatial and temporal resolution airborne imagery were acquired for the Ribble Estuary, North West England in 1997 and 2003, to assess the application of time-series airborne remote sensing to quantify total suspended sediment and radionuclide fluxes during a flood and ebb tide sequence. Concomitant measurements of suspended particulate matter (SPM) and water column turbidity were obtained during the time-series image acquisition for the flood and ebb tide sequence on the 17th July 2003 to verify the assumption of a vertically well mixed estuary and thus justifying the vertical extrapolation of spatially integrated estimate of surface SPM. The 137Cs activity concentrations were calculated from a relatively stable relationship between SPM and 137Cs for the Ribble Estuary. Total estuary wide budgets of sediment and 137Cs were obtained by combining the image-derived estimates of surface SPM and 137Cs with estimates of water volume from a two-dimensional hydrodynamic model (VERSE) developed for the Ribble Estuary. These indicate that around 10,000 tonnes of sediment and 2.72 GBq of 137Cs were deposited over the tidal sequence monitored in July 2003. This compared favourably with bed height elevation change estimated from field work. An uncertainty analysis on the total sediment and 137Cs flux yielded a total budget of the order of 40% on the final estimate. The results represent a novel approach to providing a spatially integrated estimate of the total net sediment and radionuclide flux in an intertidal environment over a flood and ebb tide sequence.  相似文献   

5.
6.
Addressing uncertainties in human health risk assessment is a critical issue when evaluating the effects of contaminants on public health. A range of uncertainties exist through the source-to-outcome continuum, including exposure assessment, hazard and risk characterisation. While various strategies have been applied to characterising uncertainty, classical approaches largely rely on how to maximise the available resources. Expert judgement, defaults and tools for characterising quantitative uncertainty attempt to fill the gap between data and regulation requirements. The experiences of researching 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) illustrated uncertainty sources and how to maximise available information to determine uncertainties, and thereby provide an ‘adequate’ protection to contaminant exposure. As regulatory requirements and recurring issues increase, the assessment of complex scenarios involving a large number of chemicals requires more sophisticated tools. Recent advances in exposure and toxicology science provide a large data set for environmental contaminants and public health. In particular, biomonitoring information, in vitro data streams and computational toxicology are the crucial factors in the NexGen risk assessment, as well as uncertainties minimisation. Although in this review we cannot yet predict how the exposure science and modern toxicology will develop in the long-term, current techniques from emerging science can be integrated to improve decision-making.  相似文献   

7.
The average particulate environmental tobacco smoke (ETS) exposure of never and current smokers and the average lung cancer mortality rate for current smokers is estimated from empirical data. These estimates are used in a linear downward extrapolation of the lung cancer risk/mg of particulate ETS exposure for current smokers to calculate the average lung cancer risk for never smokers and the number of never smoker lung cancer deaths (LCD) in the U.S. in 1980 from exposure to particulate ETS. The estimated average daily inhaled particulate ETS exposure for never smokers is 0.62 mg/day for men and 0.28 mg/day for women. The average never smoker is estimated to retain 11% of the inhaled exposure, for a daily retained exposure of 0.07 mg for men and 0.03 mg for women. Other estimates are: a daily retained exposure for current smokers of 310 mg for men and 249 mg for women, a smoking-attributable lung cancer risk for current smokers in 1980 of 284 LCD/100,000 men and 121 LCD/100,000 women, and an annual retained-exposure lung cancer risk for never smokers of 0.64 LCD/100,000 men and 0.015 LCD/100,000 women. These risks and exposures estimate 12 lung cancer deaths among never smokers from exposure to particulate ETS: 8 among the 11.96 million male never smokers and 4 among the 28.85 million female never smokers in the U.S. in 1980. Conversely, between 655 and 3,610 never smoker lung cancer deaths are estimated from methods based on the average lung cancer risk observed in epidemiological studies of exposure to ETS. Three possible reasons for the discrepancy between the exposure and risk-based estimates are discussed: the excess risks observed in epidemiological studies are due to bias, the relationship between exposure and risk is supralinear, or sidestream tobacco smoke is substantially more carcinogenic than an equivalent exposure to mainstream smoke.  相似文献   

8.
The risk estimates calculated from the conventional risk assessment method usually are compound specific and provide limited information for source-specific air quality control. We used a risk apportionment approach, which is a combination of receptor modeling and risk assessment, to estimate source-specific lifetime excess cancer risks of selected hazardous air pollutants. We analyzed the speciated PM(2.5) and VOCs data collected at the Beacon Hill in Seattle, WA between 2000 and 2004 with the Multilinear Engine to first quantify source contributions to the mixture of hazardous air pollutants (HAPs) in terms of mass concentrations. The cancer risk from exposure to each source was then calculated as the sum of all available species' cancer risks in the source feature. We also adopted the bootstrapping technique for the uncertainty analysis. The results showed that the overall cancer risk was 6.09 x 10(-5), with the background (1.61 x 10(-5)), diesel (9.82 x 10(-6)) and wood burning (9.45 x 10(-6)) sources being the primary risk sources. The PM(2.5) mass concentration contributed 20% of the total risk. The 5th percentile of the risk estimates of all sources other than marine and soil were higher than 110(-6). It was also found that the diesel and wood burning sources presented similar cancer risks although the diesel exhaust contributed less to the PM(2.5) mass concentration than the wood burning. This highlights the additional value from such a risk apportionment approach that could be utilized for prioritizing control strategies to reduce the highest population health risks from exposure to HAPs.  相似文献   

9.
Biosphere dose conversion factors are computed for the French high-level geological waste disposal concept and to illustrate the combined probabilistic and deterministic approach. Both 135Cs and 79Se are used as examples. Probabilistic analyses of the system considering all parameters, as well as physical and societal parameters independently, allow quantification of their mutual impact on overall uncertainty. As physical parameter uncertainties decreased, for example with the availability of further experimental and field data, the societal uncertainties, which are less easily constrained, particularly for the long term, become more and more significant. One also has to distinguish uncertainties impacting the low dose portion of a distribution from those impacting the high dose range, the latter having logically a greater impact in an assessment situation. The use of cumulative probability curves allows us to quantify probability variations as a function of the dose estimate, with the ratio of the probability variation (slope of the curve) indicative of uncertainties of different radionuclides. In the case of 135Cs with better constrained physical parameters, the uncertainty in human behaviour is more significant, even in the high dose range, where they increase the probability of higher doses. For both radionuclides, uncertainties impact more strongly in the intermediate than in the high dose range. In an assessment context, the focus will be on probabilities of higher dose values. The probabilistic approach can furthermore be used to construct critical groups based on a predefined probability level and to ensure that critical groups cover the expected range of uncertainty.  相似文献   

10.
Perfluorooctane sulfonate (PFOS) found extensive use for over 60 years up until its restriction in the early 2000s, culminating in its listing under the Stockholm Convention on Persistent Organic Pollutants (POPs) in 2009. Efforts to minimise human body burdens are hindered by uncertainty over their precise origins. While diet appears the principal source for the majority of western populations (with other pathways like dust ingestion, drinking water and inhalation also important contributors); the role played by exposure to PFOS-precursor compounds followed by in vivo metabolism to PFOS as the ultimate highly stable end-product is unclear. Such PFOS-precursor compounds include perfluorooctane sulfonamide derivates, e.g., perfluorooctane sulfonamides (FOSAs) and sulfonamidoethanols (FOSEs). Understanding the indirect contribution of such precursors to human body burdens of PFOS is important as a significant contribution from this pathway would render the margin of safety between the current exposure limits and estimates of external exposure to PFOS alone, narrower than hitherto appreciated. Estimates derived from mathematical modelling studies, put the contribution of so-called “precursor exposure” at between 10% and 40% of total PFOS body burdens. However, there are substantial uncertainties associated with such approaches. This paper reviews current understanding of human exposure to PFOS, with particular reference to recent research highlighting the potential of environmental forensics approaches based on the relative abundance and chiral signatures of branched chain PFOS isomers to provide definitive insights into the role played by “precursor exposure”.  相似文献   

11.
The chemical composition and microbiological contamination of well water and Nile River water used for drinking were investigated in localities around Khartoum, Sudan, to present baseline data. The chemical analyses results obtained indicated that public health hazards due to pH, Ca++, CO3??, HCO3?, and NO3? are unlikely in all the samples studied, while Na+ and Cl? ions concentrations in well water warrant some attention. Contamination from organic matter and suspended material is also negligible. Microbial contamination with coliform and fecal coliform is high in surface wells and in the Nile River, but negligible in deep bores, tap water, and mineral water. The logarithm of the colony count ranges from zero for mineral water to 6.8 for water from the White Nile. In addition to drawing further attention to the well water and Nile water used for drinking by a wide sector of the population, the microbial count data for water from the Nile disagreed with the generally held belief that the Nile, being one of the largest rivers of the world, carries no detectable fecal contamination. Our data also did not support the belief that the White Nile is more contaminated than the Blue Nile.  相似文献   

12.
Decision making for zoonotic disease management should be based on many forms of appropriate data and sources of evidence. However, the criteria and timing for policy response and the resulting management decisions are often altered when a disease outbreak occurs and captures full media attention. In the case of waterborne disease, such as the robust protozoa, Cryptosporidium spp, exposure can cause significant human health risks and preventing exposure by maintaining high standards of biological and chemical water quality remains a priority for water companies in the UK. Little has been documented on how knowledge and information is translated between the many stakeholders involved in the management of Cryptosporidium, which is surprising given the different drivers that have shaped management decisions. Such information, coupled with the uncertainties that surround these data is essential for improving future management strategies that minimise disease outbreaks. Here, we examine the interplay between scientific information, the media, and emergent government and company policies to examine these issues using qualitative and quantitative data relating to Cryptosporidium management decisions by a water company in the North West of England. Our results show that political and media influences are powerful drivers of management decisions if fuelled by high profile outbreaks. Furthermore, the strength of the scientific evidence is often constrained by uncertainties in the data, and in the way knowledge is translated between policy levels during established risk management procedures. In particular, under or over-estimating risk during risk assessment procedures together with uncertainty regarding risk factors within the wider environment, was found to restrict the knowledge-base for decision-making in Cryptosporidium management. Our findings highlight some key current and future challenges facing the management of such diseases that are widely applicable to other risk management situations.  相似文献   

13.
14.
Few multi-city studies in Asian developing countries have examined the acute health effects of ambient nitrogen dioxide (NO2). In the China Air Pollution and Health Effects Study (CAPES), we investigated the short-term association between NO2 and mortality in 17 Chinese cities. We applied two-stage Bayesian hierarchical models to obtain city-specific and national average estimates for NO2. In each city, we used Poisson regression models incorporating natural spline smoothing functions to adjust for long-term and seasonal trend of mortality, as well as other time-varying covariates. We examined the associations by age, gender and education status. We combined the individual-city estimates of the concentration–response curves to get an overall NO2–mortality association in China. The averaged daily concentrations of NO2 in the 17 Chinese cities ranged from 26 μg/m3 to 67 μg/m3. In the combined analysis, a 10-μg/m3 increase in two-day moving averaged NO2 was associated with a 1.63% [95% posterior interval (PI), 1.09 to 2.17], 1.80% (95% PI, 1.00 to 2.59) and 2.52% (95% PI, 1.44 to 3.59) increase of total, cardiovascular, and respiratory mortality, respectively. These associations remained significant after adjustment for ambient particles or sulfur dioxide (SO2). Older people appeared to be more vulnerable to NO2 exposure. The combined concentration–response curves indicated a linear association. Conclusively, this largest epidemiologic study of NO2 in Asian developing countries to date suggests that short-term exposure to NO2 is associated with increased mortality risk.  相似文献   

15.
The US Department of Energy has developed a graded approach for evaluating radiation doses to biota. Limiting concentrations of radionuclides in water, soil, and sediment were derived for twenty-three radionuclides. Four organism types (aquatic animals, riparian animals, terrestrial animals, and terrestrial plants) were selected as the basis for method development. While environmental transfer data needed for deriving biota tissue concentrations are available for aquatic animals and terrestrial plants, less information is available for terrestrial and riparian organisms. Two methods were applied and examined for their ability to provide estimates of organism:soil or organism:water concentration factors in lieu of measured data. The kinetic/allometric approach combined with a parameter uncertainty analysis provides a needed method to estimate concentration factors across multiple species with limited input data.  相似文献   

16.
It is often assumed that water consumption is the major route of exposure for fluoride and analysis of water fluoride content is the most common approach for ensuring that the daily intake is not too high. In the present study, the risk of excess intake was characterized for children in households with private wells in Kalmar County, Sweden, where the natural geology shows local enrichments in fluorine. By comparing water concentrations with the WHO drinking water guideline (1.5 mg/L), it was found that 24% of the ca. 4800 sampled wells had a concentration above this limit, hence providing a figure for the number of children in the households concerned assessed to be at risk using this straightforward approach. The risk of an excess intake could, alternatively, also be characterized based on a tolerable daily intake (in this case the US EPA RfD of 0.06 mg/kg-day). The exposure to be evaluated was calculated using a probabilistic approach, where the variability in all exposure factors was considered, again for the same study population. The proportion of children assessed to be at risk after exposure from drinking water now increased to 48%, and when the probabilistic model was adjusted to also include other possible exposure pathways; beverages and food, ingestion of toothpaste, oral soil intake and dust inhalation, the number increased to 77%. Firstly, these results show how the risk characterization is affected by the basis of comparison. In this example, both of the reference values used are widely acknowledged. Secondly, it illustrates how much of the total exposure may be overlooked when only focusing on one exposure pathway, and thirdly, it shows the importance of considering the variability in all relevant pathways.  相似文献   

17.
ObjectiveWe used log-linear and log-log exposure-response (E-R) functions to model the association between PM2.5 exposure and non-elective hospitalizations for pneumonia, and estimated the attributable hospital costs by using the effect estimates obtained from both functions.MethodsWe used hospital discharge data on 3519 non-elective pneumonia admissions from UZ Brussels between 2007 and 2012 and we combined a case-crossover design with distributed lag models. The annual averted pneumonia hospitalization costs for a reduction in PM2.5 exposure from the mean (21.4 μg/m3) to the WHO guideline for annual mean PM2.5 (10 μg/m3) were estimated and extrapolated for Belgium.ResultsNon-elective hospitalizations for pneumonia were significantly associated with PM2.5 exposure in both models. Using a log-linear E-R function, the estimated risk reduction for pneumonia hospitalization associated with a decrease in mean PM2.5 exposure to 10 μg/m3 was 4.9%. The corresponding estimate for the log-log model was 10.7%. These estimates translate to an annual pneumonia hospital cost saving in Belgium of €15.5 million and almost €34 million for the log-linear and log-log E-R function, respectively.DiscussionAlthough further research is required to assess the shape of the association between PM2.5 exposure and pneumonia hospitalizations, we demonstrated that estimates for health effects and associated costs heavily depend on the assumed E-R function. These results are important for policy making, as supra-linear E-R associations imply that significant health benefits may still be obtained from additional pollution control measures in areas where PM levels have already been reduced.  相似文献   

18.
Four models for human exposure to air pollution are discussed and compared. The simple microenvironment monitoring model measures pollutant concentrations at fixed locations, regarded as proxies for similar locations or microenvironments. Since this model does not require pollutant measurements on the individual level, it is easy to implement. However, the model can only be used to estimate the average exposure in a population, and it does not provide any estimate of the variability and distribution of individual exposures. The replicated microenvironment monitoring model provides some estimates of the variability and distribution. However, because of the possible discrepancy between the microenvironment concentration distribution and the individual concentration distribution, some adjustment might be necessary. Integrated personal monitoring allows direct estimation of the average exposure as well as the variability and distribution of individual exposures. Coupled with the appropriate time budget data, a regression analysis can be applied to estimate the contribution from each microenvironment type. However, possible collinearity problems might result in low precision in those estimates. Moreover, it might be difficult to adjust for a possible Hawthorne effect. Continuous personal monitoring has the advantage of recording exposure in each microenvironment type separately, allowing direct estimation of the average exposure as well as the variability and distribution of exposures in each microenvironment type. Moreover, it can also be conducted in conjunction with a two-stage sampling scheme, using information from a large data base on activity patterns, thereby making more efficient use of the monitoring data. It is also easier to adjust for a possible Hawthorne effect in this design.  相似文献   

19.
In this paper we develop a novel, comprehensive method for estimating the global human carrying capacity in reference to food production factors and levels of food consumption. Other important interrelated dimensions of carrying capacity such as energy, non-renewable resources, and ecology are not considered here and offer opportunities for future work. Use of grain production (rain-fed/irrigated), animal product production (grazing/factory farm), diet pattern (grain/animal products), and a novel water accounting method (demand/supply) based on actual water consumption and not on withdrawal, help resolve uncertainties to find better estimates. Current Western European food consumption is used as a goal for the entire world. Then the carrying capacity lies in the range of 4.5–4.7 billion but requiring agricultural water use increase by 450–530% to 4725–5480 km3, the range based on different estimates of available water. The cost of trapping and conveying such water, will run 4.5–13.5 trillion over 50 years requiring an annual spending increase of 150–400%, straining the developing world where most of the population increase is expected. We reconfirm estimates in the literature using a dynamic model. ‘Corner scenarios’ with extreme optimistic assumptions were analyzed using the reasoning support software system GLOBESIGHT. With a hypothetical scenario with a mainly vegetarian diet (grazing only with 5% animal product), the carrying capacity can be as high as 14 billion. Ecological deterioration that surely accompanies such a population increase would negatively impact sustainable population. Using our approach the impact of ecological damage could be studied. Inter- and intra-regional inequities are other considerations that need to be studied.  相似文献   

20.
The water pollution levels of Kandy Lake in Sri Lanka were monitored to probe the impacts and influences of urban environment in a developing country. Although Kandy Lake is a source of drinking water for the town, it was observed that a large number of effluent channels drained in to it, carrying a continuous flow of contaminated water. The hydrogeochemistry, pH, and bacterial levels were studied using lake and drain water samples. A high coliform count and a high degree of faecal contamination was observed in all water samples obtained from the lake and drains. The Cu2+ and F? concentrations were relatively low and did not reach harmful levels, but were higher than that in the background. The pH of water remained almost neutral and provided ideal conditions for bacterial growth. All laboratory and field experiments indicated eutrophic conditions in the lake and the unsuitability of water in the unpurified state for drinking purposes. The purified water had a zero coliform count, but the chlorine content added was relatively high and may also prove to be a health hazard. On the whole, the polluted water in Kandy Lake indicated the adversities of human involvements with nature and provided a good case study for human influence on water pollution in a developing country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号