首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
丝状菌作为污水生物处理中的常见菌种,被认为是诱发污泥膨胀的主要因素.然而由于其特殊的丝状形态,对污泥颗粒的形成起到了至关重要的作用.以丝状菌膨胀污泥为研究对象,探究丝状菌对污泥颗粒化过程及维持污泥颗粒稳定性的影响,并对污泥系统微生物多样性进行分析.试验分别接种丝状菌膨胀污泥(SVI=241.56 mL·g-1)和絮状污泥(SVI=64.22 mL·g-1)进行颗粒化培养,结果表明,膨胀污泥和絮状污泥颗粒出现时间分别为20 d和40 d,成熟颗粒粒径分别为650μm和700μm,膨胀污泥颗粒化时间仅为絮状污泥的一半.缺氧区添加后,颗粒都有不同程度破碎,但膨胀污泥培养的成熟颗粒SV30/SV5值短期波动后恢复至1,维持稳定性能力更强.微生物群落结构分析表明,膨胀污泥中norank_o__Saccharimonadales、unclassified_o__Saccharimonadales和unclassified_f__Saccharimonadaceae相对丰度从0.05%、0.01%和0.01%增长...  相似文献   

2.
营养物质缺乏引起的好氧颗粒污泥膨胀及其恢复   总被引:5,自引:3,他引:2  
张著  高大文  袁向娟  勾倩倩 《环境科学》2012,33(9):3197-3201
采用5个相同的序批式反应器(sequencing batch reactor,SBR)研究了不同碳、氮、磷比条件下好氧颗粒污泥形态、沉降性能和有机物去除情况,并根据SVI30值分析了由营养物缺乏引起的好氧颗粒污泥膨胀情况及其恢复方法.结果表明,当进水m(COD)/m(N)/m(P)为100/5.8/1.2时,颗粒污泥结构完整,颗粒密实,SVI30在15~30 mL.g-1之间波动,COD去除率可保持在90%以上,系统总体运行稳定,没有出现污泥膨胀.当进水m(COD)/m(N)/m(P)为100/3/0.6和100/1.9/0.4时,系统中的颗粒污泥出现解体现象,但是SVI30值仍然低于35 mL.g-1,没有发生丝状菌膨胀;在整个试验过程中系统COD去除率在85%以上.当进水m(COD)/m(N)/m(P)为100/0.5/0.1和没有投加任何氮磷物质时,系统SVI30均达到150 mL.g-1,污泥难以沉降,系统发生了丝状菌污泥膨胀.两系统COD去除率差别较大,前者COD去除率在试验后期保持在65%~80%之间,而后者COD去除率从试验前期一直降低,最后达到10%以下,系统完全崩溃.N、P营养物质缺乏引起的膨胀好氧颗粒污泥,通过补充充足营养物质运行48个周期后,2个系统膨胀污泥的沉降性能及有机物降解率完全恢复,但是污泥形态(除污泥颜色)恢复不明显.  相似文献   

3.
为探究温度冲击引起的污泥膨胀机理,以生活污水为处理对象,采用SBR工艺分别运行温度骤降系统和温度梯度降低系统,利用Illumina MiSeq高通量测序技术分析温度变化过程中微生物群落整体变化,并对膨胀阶段优势丝状菌类型进行解析.结果表明,温度骤降系统优势丝状菌为微丝菌(Microthrixparvicella),SVI值升高至291mL/g以上,温度梯度降低系统优势丝状菌为Eikelboom Type 0092型丝状菌,SVI值稳定维持在250mL/g,因此Eikelboom Type 0092型丝状菌适宜在温度冲击环境中生长繁殖.温度冲击方式不同导致菌群组成具有差异性,Proteobacteria相对丰度均值为39.3%,其占比在不同阶段变化较小.两个系统在污泥膨胀阶段Actinobacteria和Chloroflexi的相对丰度占比不同.各样本中与去除有机物相关微生物菌群丰度均值为13.6%,Nitrospira其相对丰度均值为2.48%,占NOB总含量80%以上.温度梯度降低系统发生的Eikelboom Type 0092型丝状菌型污泥微膨胀,其出水水质没有发生严重恶化,COD和NH4+-N的去除效果均高于温度骤降系统.  相似文献   

4.
好氧颗粒污泥技术处理乡镇污水应用   总被引:5,自引:1,他引:4       下载免费PDF全文
为研究好氧颗粒污泥技术是否适用于处理乡镇污水,采用该技术对处理规模为400 m3/d的乡镇污水处理厂进行改造,考察了污泥颗粒化过程、污染物去除效果及接种絮状污泥与好氧颗粒污泥微生物群落结构差异.结果表明,以进料负荷的交替变化作为调控措施,反应器启动后第13天污泥出现颗粒化,颗粒污泥平均粒径0.499 mm;启动第40天污泥完全颗粒化,颗粒污泥平均粒径1.336 mm.完全颗粒化后SBR反应器内ρ(MLSS)稳定在8~12 g/L,SVI维持在25~40 mL/g,出水ρ(CODCr)、ρ(NH3-N)、ρ(TN)始终满足GB 18918-2002《城镇污水处理厂污染物排放标准》一级A标准要求.群落结构的研究结果表明,相比于接种絮状污泥,好氧颗粒污泥群落丰富度和多样性均明显减少,反硝化功能菌和聚磷菌丰度显著增加;在好氧颗粒污泥中,Nitrosomonas(亚硝化单胞菌属)、Nitrospira(硝化螺旋菌属)是主要的硝化功能菌;Dechloromonas、Clostridium sensu stricto 13(梭菌属)是主要的反硝化细菌;Aeromonas(气单胞菌属)、Clostridium sensu stricto 13(梭菌属)是主要的聚磷菌;Uncultured Xanthomonadaceae、Comamonas(丛毛单胞菌属)、Zoogloea(动胶菌属)是降解有机物的主要菌种,其中Comamonas(丛毛单胞菌属)、Zoogloea(动胶菌属)也是好氧污泥颗粒化过程中的关键菌株.   相似文献   

5.
丝状菌污泥致密过程的强化条件研究   总被引:3,自引:0,他引:3  
利用强化条件促使丝状菌污泥致密,是控制丝状菌污泥膨胀的一种新途径.分别采用提高溶解氧、加大表面流体流速、增加进水钙离子浓度、延长饥饿时间等方法从污泥的沉降性能方面探讨了丝状菌污泥在何时致密及怎样致密等问题.结果表明,加大表面气体流速能够短期内改善污泥的沉降性能,并且形成丝状菌颗粒污泥,污泥的SVI从膨胀时的800 mL/g降低为350 mL/g,但长期作用不明显,SVI在保持了一段时间较低值后,再次升高到800 mL/g以上.增加进水钙离子浓度能够通过形成簇状污泥群落来提高污泥的沉降性能,SVI值逐渐降低到300 mL/g,但是没有形成丝状菌颗粒.提高溶解氧和延长曝气时间在改善污泥沉降性能和丝状菌颗粒化两方面皆无明显效果,污泥的SVI并没有降低.另外,通过研究网眼椭圆度与污泥SVI的关系,发现具有高椭圆度(椭圆度O约为1.5)的成簇生长丝状菌菌群,能够改善污泥沉降性能.浸泡实验发现酸性条件对菌丝的凝聚具有破坏作用,碱性条件和二价阳离子对其影响不显著.  相似文献   

6.
为探究低温下丝状菌污泥膨胀过程中微生物多样性的变化特征,实验采用低温-SBR反应器成功诱发污泥膨胀,并借助Illumina MiSeq高通量测序技术,考察了不同沉降性能下活性污泥微生物群落的整体变化特征、各特定菌群及特定菌属的变化特征.结果表明,在系统运行温度降至(14±1)℃后可成功诱发丝状菌污泥膨胀,SVI可恶化至663.99 mL·g~(-1),且膨胀后COD去除率和TN去除率仍能维持在90%和86%左右.低温下污泥膨胀的发生不仅会导致系统内微生物整体多样性和均一性的降低,使特定菌群中丝状菌群的丰度由0.49%增至26.04%,还会使脱氮菌群的丰度由21.04%减少至13.99%、除磷菌群的丰度由4.25%减少至1.93%.发现的5种丝状菌属中,以Thiothrix为代表的3种菌属的丰度递增,仅Haliscomenobacter的丰度递减;发现的19种脱氮菌属中,以Nitrosomonas为代表的5种菌属的丰度递增,以Nitrospira为代表的7种菌属的丰度递减;发现的8种除磷菌属中,Pseudomonas和Tetrasphaera的丰度递增,以Candidatus_Competibacter为代表的5种菌属的丰度递减.虽然污泥膨胀对微生物菌群结构产生较大影响,但不同泥样中始终存在的477个OTUs和227个菌属说明膨胀过程中反应器内主体微生物仍呈相对稳定状态.  相似文献   

7.
采用PCR-DGGE技术并结合系统处理效果研究了贫营养条件下IAMBR污泥微生物群落结构,结果表明:IAMBR污泥中总细菌多样性特征、相似性特征和种群归属特征具有高度的协同性.运行前18天,氨氮去除率由95%降至73%后增加至82%,同时SVI值由123.7mL/g升至135.2mL/g再降至128.4mL/g.微生物群落在试验末期演替剧烈,总细菌相似性指数下降到63.6%,SVI值最终升至132.5mL/g.通过克隆测序分析,IAMBR系统中微生物菌种大部分为未培养菌种,其中亚硝化螺菌属占据优势地位,说明贫营养环境对IAMBR微生物群落产生不良影响,污泥微生物功能性指向明显,即硝化功能菌占据优势地位.  相似文献   

8.
不同好氧颗粒污泥中微生物群落结构特点   总被引:3,自引:0,他引:3  
为了探讨活性污泥好氧颗粒化过程对微生物种群的影响、不同底物及不同颗粒化方法培养的好氧颗粒污泥中微生物群落结构的差异,以接种污泥、模拟废水好氧颗粒污泥和分别投加粉末活性炭和硅藻土的实际生活污水好氧颗粒污泥为研究对象,利用PCR-DGGE对比分析了接种污泥和好氧颗粒污泥中的微生物群落结构.结果表明:活性污泥好氧颗粒化过程会减少微生物种群多样性,影响颗粒污泥稳定性的细菌被淘汰,而聚磷菌、反硝化菌、难降解有机物降解菌等污水处理功能微生物都在颗粒化过程中得到保留.活性污泥好氧颗粒化过程中能够实现亚硝化细菌(AOB)一定程度的富集.与接种活性污泥相比,好氧颗粒污泥中AOB的多样性指数与均匀性指数均有提高.好氧颗粒污泥中的优势菌群主要分布于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和未培养菌(uncultured bacterium).其中AOB均属于β-Proteobacteria的亚硝化单胞菌属(Nitrosomonas).  相似文献   

9.
SBR中厌氧颗粒污泥向好氧颗粒污泥的转化   总被引:25,自引:10,他引:15  
在SBR反应器中以醋酸钠为碳源,UASB厌氧颗粒污泥作为接种污泥,在好氧曝气条件下运行.通过观察污泥颗粒形态、结构等的变化,发现在运行中污泥颗粒经历了形态保持,成分置换的过程.污泥浓度先增加后降低,在运行35 d后逐渐稳定在5g/L,SVI值稳定在30~40mL/g的水平.在40~60d内反应器中颗粒污泥一直占主体成分,悬浮相浓度低于0.5g/L.在好氧条件下最终颗粒污泥形态、大小稳定,表明好氧颗粒污泥已经成功获得,好氧颗粒污泥与接种污泥相比在粒径、沉降速度、含水率以及惰性成分的含量上都有一定的变化.电镜观察还表明,原厌氧颗粒污泥中的微生物以球菌为主,而获得的好氧颗粒污泥中的微生物以丝状菌和杆菌为主.  相似文献   

10.
实验考察两种接种污泥——絮状活性污泥和厌氧颗粒在膜生物反应器(MBR)中培养好氧颗粒污泥过程中理化特性的差异,实验结果表明:好氧颗粒污泥均以丝状菌交织构成网状框架结构,球菌、杆菌穿插其间,并且外围附着一些原、后生动物;由厌氧颗粒污泥形成的好氧颗粒表面结构比由絮状污泥形成的好氧颗粒污泥表面结构更加规则致密。由絮状污泥和厌氧颗粒污泥培养成熟的好氧颗粒污泥平均粒径分别为1.3mm和1.5mm,它们的粒径比较接近,但都小于厌氧颗粒污泥。两种好氧颗粒污泥的SVI值75mL/g,沉降速度都随粒径的增大而增大,范围为25~89m/h,都具有良好的沉降性能。两种接种污泥在MBR反应器中培养好氧颗粒污泥的过程中,MLVSS的增殖率均先为负值,然后逐渐上升变成正值,并且在好氧颗粒成熟后稳定在一定的水平。  相似文献   

11.
温度对活性污泥沉降性能与微生物种群结构的影响   总被引:3,自引:0,他引:3  
为探究运行温度与活性污泥沉降性能之间的关系,采用5个带有自控设备的序批式反应器考察了不同的运行温度(15,20,25,30和35℃)对活性污泥沉降性能及微生物种群结构的影响.结果表明,采用短时进水,由于运行温度对污泥沉降性能的影响远远弱于底物浓度的影响,且系统中的优势丝状菌以Type 0041和Type 0092为主,所以5个系统均未发生污泥膨胀现象;采用长时进水,5个系统均发生了丝状膨胀现象,温度与低底物浓度的相互作用导致污泥的SVI值随运行温度(15~30℃)的增加而升高,而运行温度为35℃时污泥的SVI值要低于30℃的情况.同时不同的运行温度下污泥胞内胞外贮存特性及优势丝状菌的种类差异较大.  相似文献   

12.
低温下活性污泥膨胀的微生物群落结构研究   总被引:3,自引:12,他引:3  
采用水质参数指标测定和高通量测序技术,探讨了郑州某污水处理厂冬季间歇性污泥膨胀机制.结果表明该厂活性污泥的污泥容积指数(SVI值)的变化与季节温度变化有显著的负相关性,1~4月及12月易发生污泥膨胀,但是不影响出水水质.高通量测序技术分析发现污泥膨胀月份泥样的微生物群落结构要显著不同于未膨胀月份.该厂发生丝状菌污泥膨胀的优势丝状菌为腐螺旋菌科Saprospiraceae和黄杆菌科Flavobacterium.因此,低温导致活性污泥微生物群落结构变化是引起该厂活性污泥膨胀的原因.  相似文献   

13.
为研究同步脱氮除磷系统中出现的WG(白色好氧颗粒污泥)外形特点及微生物群落特征,探究其成因,利用SEM(扫描电子显微镜)表征了系统中的WG与YG(黄色好氧颗粒污泥)的微观形态,并采用Illumina HiSeq 2500高通量测序平台对两种好氧颗粒污泥中细菌与真菌的群落组成进行研究.结果表明:WG结构疏松外形不规则,颗粒表面分布大量杆菌;而YG饱满紧实轮廓清晰,颗粒表面分布大量球菌.WG与YG的细菌群落组成相似,但真菌组成差异较大.与YG相比,WG具有更高的细菌和真菌多样性.变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)为WG和YG中的细菌优势门,其在WG中的相对丰度分别为68.85%和26.61%,在YG中的相对丰度分别为82.52%和12.30%.Candidatus competibacter、Candidatus accumulibacter和Chiayiivirga为WG中的优势属,相对丰度分别为22.13%、8.95%和7.37%;Candidatus competibacter、Chiayiivirga和Xanthomonas为YG中的优势属,相对丰度分别为47.94%、6.95%和7.06%.子囊菌门(Ascomycota)和Rozellomycota分别为WG与YG中真菌优势门,其在两个样品中的相对丰度分别为50.10%和81.77%.在属水平,WG中存在大量青霉属(Penicillium)和假丝酵母属(Candida)等丝状真菌,为WG的形成提供了框架.研究显示,当YG破碎成为小菌胶团后,附着在真菌框架上,造成了WG的快速形成,同时WG中Candidatus competibacter的相对丰度较低,使其外形疏松、透光性较好,呈现出白色.   相似文献   

14.
以西安市第三污水处理厂氧化沟中的普通絮状活性污泥为接种污泥,人工配制的模拟生活废水为营养,表面气体上升流速为1.06~1.77 cm/s时,在SBR反应器中成功培养出了好氧颗粒污泥,SVI值由最初的168 mL/g逐渐降低至40 mL/g左右,污泥表现出了良好的沉降性能,同时,对COD、TN、TP的去除率分别达到了95%、96%和98%。研究认为,颗粒污泥的形成是一个微生态系统形成的过程,水力剪切力是其形成的一个重要影响因素,直接影响到好氧颗粒污泥微生物种群的结构和分布;从丝状微生物与微生态群落的关系分析,胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒提供了必要条件。  相似文献   

15.
废水生物处理好氧污泥颗粒化研究进展   总被引:5,自引:3,他引:2  
朱亮  徐向阳  罗伟国  查钰明 《环境科学》2007,28(11):2657-2664
综述了好氧污泥颗粒化技术在废水生物处理中的研究进展,着重讨论了好氧颗粒污泥理化特性及微生物结构、污泥颗粒化主控因子、颗粒污泥形成机理及其应用潜力等方面的研究,旨在阐明多种工艺操作条件下好氧污泥颗粒化过程.好氧颗粒污泥是近年来发现的、在好氧条件下污泥自絮凝形成的固定化颗粒,其外形规则、结构致密、沉降性能优异、抗冲击负荷能力强.污泥颗粒化过程取决于基质组成与负荷、适当的水力选择压和工艺操作参数等因素.  相似文献   

16.
同步脱氮好氧颗粒污泥的特性及其反应过程   总被引:32,自引:4,他引:28  
厌氧颗粒污泥经过驯化后,成为具有同步硝化与反硝化(SND)功能的好氧颗粒污泥.实验在2L反应器中进行,温度,pH值,溶解氧分别控制在25℃,pH7~8,3~4mg/L.在实验条件下,SND好氧颗粒污泥COD去除率90%,氨氮去除率100%,出水检测不出NO2--N和NO3--N.反应器中SND颗粒污泥粒径在2.0~2.7mm的占全部颗粒污泥的50%,SVI为15~30mL/gTSS;污泥所能承受的最大压力为23.236N;SND好氧颗粒污泥中挥发性固体为9.92mg/mL,占总固体的2/3.采用SND好氧颗粒污泥进行脱氮研究,反应6h后氨氮去除率达100%,废水中检测不到NO2--N,仅残留2mg/L的NO3--N.  相似文献   

17.
Type 0092丝状菌污泥微膨胀在短程硝化中的实现   总被引:1,自引:1,他引:0  
高春娣  安冉  韩徽  张娜  任浩  赵楠  焦二龙  彭永臻 《环境科学》2019,40(8):3722-3729
利用Type 0092丝状菌不易引发污泥恶性膨胀的特点,本实验采用实际生活污水,以SBR反应器接种短程硝化污泥,考察了短程硝化状态下启动Type 0092丝状菌污泥微膨胀的特性,研究了系统启动与维持期间的污泥沉降性能、亚硝酸盐积累率(NAR)、污染物去除特性以及污泥菌群结构变化情况.结果表明控制DO为0. 3~0. 8 mg·L~(-1),F/M(以COD/MLSS计)=0. 24 kg·(kg·d)~(-1),按照交替缺氧/好氧模式运行(单周期3次,缺氧∶好氧=20 min∶60 min),能够启动Type 0092丝状菌污泥微膨胀与短程硝化耦合,系统SVI值维持在180 m L·g~(-1)左右,NAR一直维持在99%左右,COD和TN去除率能够分别提高约13%和5%,相较于传统全程硝化非微膨胀状态曝气量能节省约62. 5%.当交替缺氧/好氧模式变为单周期交替6次,缺氧∶好氧=10 min∶30 min,亚硝酸盐氧化菌(NOB)的活性会恢复,使短程硝化被破坏;低溶解氧、交替缺氧/好氧、低负荷是实现Type 0092丝状菌污泥微膨胀的关键因素,当负荷(以COD/MLSS计)大于0. 25 kg·(kg·d)~(-1)时,仅靠低溶解氧和间歇曝气无法维持污泥微膨胀状态.  相似文献   

18.
为了直接识别出污泥中的聚磷细菌和其种属,本研究采用4',6-二脒基-2-苯基吲哚(DAPI)染色和流式细胞荧光分选技术(FACS)对以淀粉为唯一碳源的缺氧/好氧序批式活性污泥(SBR)系统(R1)的缺氧末期和好氧末期以及以乙酸盐为唯一碳源的厌氧/好氧SBR系统(R2)的好氧末期污泥的聚磷细菌进行了原位分选,并通过16S rRNA高通量测序技术鉴定了分选后细菌的种属.结果表明,在R1中,缺氧期和好氧期均进行生物除磷,且缺氧期吸磷量大于好氧期. R2中发生着厌氧期释磷、好氧期大量吸磷的传统生物除磷.利用FACS在R1和R2污泥中均分选得到106个相对纯度为85%的具有聚磷颗粒的细菌.测序结果表明,在R1系统中,缺氧段优势的聚磷菌属为Halomonas(37.75%)、unclassified Brucellaceae(14.15%)、Pseudomonas(6.49%)、unclassified Chlamydiales(0.027%)和Sphingopyxis(0.007%);好氧段优势聚磷菌属为Halomonas(19.72%)、unclassified Brucellaceae(14.62%)、Pseudomonas(14.28%)、unclassified Comamonadaceae(0.046%)、unclassified Acidobacteria Gp3(0.036%)和Ferruginibacter(0.026%).R1系统中unclassified ChlamydialesSphingopyxis仅仅在缺氧条件下具有聚磷功能,而unclassified Comamonadaceae、unclassified Acidobacteria Gp3和Ferruginibacter仅在好氧条件下才具有聚磷功能.在R2系统中,优势聚磷菌群为Dechloromonas(11.06%)、unclassified Anaerolineaceae(9.29%)、unclassified Bacteroidetes(7.44%)、unclassified Gammaproteobacteria(7.34%)以及Acinetobacter(0.31%).这意味着在新型的除磷系统(R1)中,参与除磷过程的细菌包括好氧,缺氧和兼性缺氧聚磷细菌,而在传统的除磷系统(R2)中,参与除磷过程的细菌仅为好氧聚磷细菌.  相似文献   

19.
结合国外关于好氧颗粒污泥的研究成果,论述了有关好氧颗粒污泥形成过程中的影响因素,如沉降时间、水流剪力、溶解氧(DO)、胞外多聚糖(EPS)等.介绍了好氧硝化颗粒污泥、亚硝化颗粒污泥、同步硝化反硝化颗粒污泥及同步脱氮除磷颗粒污泥等生物脱氮的研究现状,指出了连续流条件下好氧颗粒污泥亚硝化反硝化及颗粒污泥活性恢复等研究方向.  相似文献   

20.
将污泥生物炭作为载体培养好氧颗粒污泥,研究培养成熟的好氧颗粒污泥在碳氮比(C/N)由10降为4条件下的长期运行稳定性.结果表明,通过添加生物炭培养成熟的好氧颗粒污泥颗粒结构更紧密,不易解体.虽然丝状菌Thiothrix大量增殖,但是好氧颗粒沉淀性能良好,SVI30始终维持在50mL/g左右;系统COD去除效率达到90%以上,TN去除率为70%左右.高通量测序分析表明,加炭系统微生物多样性有所降低,但具有反硝化功能的细菌数量增加,提升了系统脱氮性能.添加污泥生物炭培养成熟的好氧颗粒污泥具有更好的脱氮性能和长期运行稳定性,有利于低C/N条件下的高氨氮废水处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号