首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
针对神华集团典型“近零排放”燃煤机组,考察了大气污染物(烟尘、SO2、NOx、汞及其化合物)的排放特征,提出了更加契合绿色发展生态环保要求的燃煤电厂大气污染物排放限值,即烟尘、SO2、NOx和汞及其化合物排放限值分别为1、10、20和0.003 mg/m3(简称“‘1123’排放限值”).评估了新建“近零排放”燃煤机组的长期运行排放状态,并研究了“近零排放”机组汞污染协同减排效果.结果表明,2017年1—10月新建机组烟尘、SO2、NOx排放质量浓度平均值分别在0.69~0.77、6.04~6.63、16.56~16.79 mg/m3之间,排放绩效可低至0.0023、0.022、0.057 g/(kW·h),污染减排已达到国际领先水平;“1123”排放限值下烟尘、SO2和NOx的达标率分别超过92.06%、85.43%和77.46%,“近零排放”原则性技术路线可实现更好、更优的生态环保排放指标.燃煤机组通过“近零排放”技术改造,可提高烟气中Hg0的氧化效率和汞化合物的捕获效率,环保设施组合协同脱汞效率提升至75.3%~90.9%(平均值为82.8%±8.1%),汞排放水平降至0.51~1.45 μg/m3〔平均质量浓度为(0.94±0.47)μg/m3〕,基本达到国际先进煤电机组的协同控制水平.研究显示,清洁煤电大气污染物新排放限值总体上比GB 13223—2011《火电厂大气污染物排放标准》中燃煤电厂大气污染物排放限值小1个数量级,可为加快推进生态文明建设、制订先进的燃煤电厂大气污染物排放新标准提供科学依据.   相似文献   

2.
我国区域性复合型大气污染日益严重,以燃煤火电为代表的煤炭消费相关产业已经成为最为重要的大气污染源,并已成为制约燃煤火电行业发展的重要因素. 应用RAMS(区域大气模式系统)-CMAQ(多尺度空气质量模式系统)模拟和评估全国燃煤火电对区域大气环境的影响,并分析了近地面风场对燃煤火电布局的影响;基于煤炭消费总量增长趋势与控制目标,预测燃煤火电的发展规模,提出全国燃煤火电分区布局策略. 结果表明:燃煤电厂对我国东部地区NOx、SO2、PM2.5以及PM10排放通量的贡献较大,但燃煤电厂对ρ(SO2)、ρ(O3)、ρ(PM2.5)和ρ(PM10)年均值的贡献率较小,基本维持在10%以下,仅对ρ(NOx)年均值贡献达到了10%~20%;考虑到盛行风向对污染物传输的影响,需谨慎在京津冀西北方向、长三角周边以及珠三角以北方向的较近区域新建燃煤电厂或大型燃煤火电基地;按照既定的煤炭消费总量控制目标(42×108 t)估算,2020年新增燃煤电厂容量可以满足电力消费需求增量的70%,“十三五”期间仍需要进一步开发其他替代能源,煤炭消费总量控制对煤电发展的影响逐渐减弱;中东部地区可增加燃煤火电装机容量较小,华北平原、长三角、珠三角和四川盆地等地区应禁止新建煤电机组,新疆维吾尔自治区、内蒙古自治区西部、宁夏回族自治区、陕西省北部等西部地区将是未来燃煤火电发展空间最大的区域.   相似文献   

3.
京津冀大气污染传输通道城市燃煤大气污染减排潜力   总被引:1,自引:0,他引:1  
以京津冀大气污染传输通道城市为研究对象,建立了燃煤电厂、燃煤锅炉、农村散煤三大污染源主要大气污染物排放计算方法,以2015年为基准年,梳理现有燃煤污染减排政策措施,对2017年“2+26”城市燃煤污染源SO2、NOx、PM、PM10、PM2.5的减排潜力进行了分析.结果表明:实施燃煤电厂超低排放改造、燃煤锅炉淘汰或改造、散煤改电(气)等措施后,“2+26”城市2017年燃煤SO2、NOx、PM、PM10、PM2.5排放量分别达到87×104t、56×104t、64×104t、45×104t、32×104t,预计比2015年分别减少44%、48%、33%、32%、30%.燃煤电厂、燃煤锅炉、农村散煤替代各项污染物减排比例分别在55%~70%、31%~38%、18%~21%,未来农村散煤治理的减排潜力还较大.从各城市情况来看,多数城市燃煤SO2、NOx减排主要来自燃煤电厂超低排放改造;保定、廊坊等城市燃煤颗粒物减排量较大,得益于散煤治理工作的大力推进.  相似文献   

4.
小型燃油锅炉大气污染物排放特征   总被引:5,自引:2,他引:3  
燃料燃烧是大气污染物的重要来源之一,对人体健康、空气质量和气候变化产生严重影响. 以85台小型燃油锅炉(≤10.5 MW)的颗粒物(PM),SO2和NOx排放实测数据为基础,通过统计分析方法,研究了大气污染物PM,SO2和NOx的排放特征及其影响因素,分析了我国小型燃油锅炉PM,SO2和NOx的排放现状. 结果表明,在未采取控制措施的条件下,ρ(PM)与燃油灰分〔w(灰分)〕和硫含量〔w(S)〕无关;而在过量空气系数(α)>1时,ρ(SO2)与燃油w(S)之间呈现显著的正线性相关性;ρ(NOx)与燃油氮含量〔w(N)〕不具有相关性,而随过量空气系数的增大而增大. 实测得到ρ(PM),ρ(SO2)和ρ(NOx)平均值分别为20.0,259.9和318.2 mg/m3;所有测试锅炉的ρ(PM)远远小于《锅炉大气污染物排放标准》(GB13271—2001)所规定的最高允许排放限值,有90%以上的锅炉达到ρ(SO2)最高允许排放限值,有84%的锅炉达到ρ(NOx)最高允许排放限值.   相似文献   

5.
基于环境统计数据,采用排放因子法建立2020年京津冀地区燃煤工业锅炉县级大气污染物排放清单.结果表明,2020年京津冀地区燃煤工业锅炉常规大气污染物SO2、NOx、颗粒物(PM)、PM10、PM2.5排放量分别为6351,7399,2952,825,399t.,其中PM10和PM2.5分别占PM排放总量的27.9%和13.5%.重金属Hg、Pb、Cd、Cr、As的排放量分别为197.9,1391.3,32.0,1214.2,362.4kg.65t/h及以上燃煤工业锅炉为主要的排放贡献源,各类污染物的排放量占京津冀地区工业锅炉各类污染物排放总量的比重为51.1%~81.2%,是污染控制及监管的重点.河北省承德市、唐山市、张家口市为污染物排放量最大的3个城市,3个城市各类污染物排放量占京津冀地区工业锅炉各类污染物排放总量的14.6%~71.9%.污染物排放强度大的区域主要集中在天津市、河北省廊坊市、唐山市的一些区县.  相似文献   

6.
生态文明建设是一场涉及生产方式、生活方式、思维方式和价值观念的革命。总结了清洁煤电“近零排放”的提出背景、环保政策及排放标准的发展历程,分析了燃煤大气污染物烟尘、二氧化硫(SO2)、氮氧化物(NOx)和汞等重金属排放控制技术发展现状以及燃煤机组实现“近零排放”的技术路线。选取不同区域典型燃煤机组进行案例分析,结果表明:典型机组烟尘、SO2及NOx排放浓度长期低于5、35、50 mg/m3,锦界三期、寿光电厂等机组低于1、10、20 mg/m3,舟山4号、三河4号机组实现“近零排放”后已稳定运行超过7年。研究“近零排放”煤电的经济性,分析“近零排放”的环境和社会效益,提出“近零排放”技术、标准和实践的哲学思考,展望清洁煤电绿色发展方向。燃煤发电“近零排放”技术和工程实践推动了我国环保标准的发展,标准提升促进了技术进步,基于我国国情持续推进煤炭清洁高效利用,不断提升环保标准,对保障我国的能源安全和可持续发展具有重要意义。  相似文献   

7.
北京市燃煤源排放控制措施的污染物减排效益评估   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析北京市燃煤源排放控制措施的污染物减排效益,基于MEIC(中国多尺度排放清单模型),采用情景分析法,评估了北京市电厂能源清洁化与末端治理、燃煤锅炉改造和城区平房区居民采暖改造等措施的污染物减排效益.结果表明,相对于无控情景,2013年北京市电厂能源清洁化与末端治理减少PM2.5、PM10、SO2和NOx排放量为1.28×104、2.10×104、5.13×104和4.98×104 t,分别占无控情景的85%、86%、87%、74%;北京市燃煤锅炉改造减少PM2.5、PM10、SO2、NOx排放量为1.09×104、2.68×104、11.64×104和5.81×104 t,分别占无煤改气情景的83%、89%、83%、83%;北京市老旧平房区的居民采暖改造减少PM2.5、PM10、SO2和NOx排放量分别为630、870、2 070和790 t,均占无煤改电情景的8%.研究显示,北京市从1998年开始采取的各种减排措施有效地减少了污染物的排放,对北京市空气质量改善具有重要意义.   相似文献   

8.
基于中国2011~2015年发电企业逐台燃煤机组基础信息、活动水平及控制技术等,建立了燃煤电厂NOx排放量计算方法和排放数据库.利用该方法,计算了2011~2015年逐个机组NOx排放量,分析了2010~2015年中国燃煤电厂NOx排放特征.结果表明:中国燃煤电厂NOx排放量自2010年的1073万t增加到2011年的1132万t,达到排放峰值,随后逐年下降,到2015年下降到522万t.燃煤电厂NOx排放地区分布不均衡,2015年内蒙、山东、江苏、江西、河南、河北、辽宁是排放量最大的省份,占中国燃煤电厂排放总量的48.8%.上海、江苏、天津、宁夏、山东、浙江和山西是排放强度最大的省份.从机组规模来看,单台容量在300~≤600MW之间的燃煤机组是NOx排放的主要来源,当机组装机容量从100MW提高到1000MW时,NOx平均排放绩效从2.91g/kWh降至0.48g/kWh,下降了近84%,这主要是由于装机容量越大的燃煤发电机组,电力工业技术水平和污染治理水平越高,NOx平均绩效越低,环境行为越好.  相似文献   

9.
面对国家碳达峰、碳中和战略目标,“十四五”时期,北京市提出推进大气污染物和温室气体排放协同控制,因此,开展协同控制效果评估对于持续改善空气质量和减少碳排放具有重要意义 .本研究在减排措施筛选和减排量测算的基础上,分析了主要大气污染物和 CO2的减排潜力,采用协同控制效应坐标系法、协同控制交叉弹性分析法和协同评估指数法,对减排措施主要大气污染物 SO2、NOx、PM10、VOCs 和温室气体CO2的协同控制效果进行评估 . 结果表明,减排措施对于 SO2、NOx的减排潜力均在 20% 以上,对于 CO2的减排潜力约为 7%. 各项措施对 NOx、PM10、VOCs和 CO2排放具有协同控制效果 .从坐标系法和评估指数法分析结果来看,浅山区煤改清洁能源和压减本地火力发电量对 SO2和 CO2的协同控制效果较好...  相似文献   

10.
太原市居民生活燃煤大气污染物排放清单研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了科学计算居民生活燃煤对大气污染物排放的贡献率,建立了太原市居民生活燃煤的大气污染物排放清单.利用高分辨率遥感卫星影像、DEM(数字高程模型)和GIS(地理信息系统)对太原市平房空间分布及面积进行了解译,得到2016年太原市平原、山区、城乡区域平房面积.对平原农村、山区农村、城中村典型区域进行实地调查,统计不同区域户均平房面积和生活燃煤使用量,估算得到了平原农村、山区农村、城中村的生活燃煤使用量.结合相关文献测算的排放因子,计算太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量.结果表明:2016年太原市有22.8×104户燃煤散烧居民,2016年燃煤消耗量为109.6×104 t,平原和城乡居民是主要的生活燃煤用户也是居民生活燃煤大气污染物的主要排放源;太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量分别为9 666.7、7 518.6、8 110.4、1 753.6、657.6、153 549.6、3 419.5、2 882.5 t;2016年太原市清徐县和太原市城区居民煤炭消耗量合计达97.9×104 t,占全年燃煤总消耗量的88%.研究显示,太原市应加快煤改气、煤改电和集中供热建设,进一步推广清洁能源以期减小居民生活燃煤大气污染.   相似文献   

11.
将基于标准起飞着陆(LTO)循环各阶段工作时间的飞机排放量计算方法加以改进,利用AMDAR资料计算飞机的有效排放高度,进而准确计算出基于逐架飞机的大气污染物排放总量.结果表明,首都国际机场2013年飞机NOx、CO、HC、SO2和PM2.5排放总量分别为7042.1t、3189.9t、295.3t、429.4t和150.4t.与传统的基于LTO循环的方法相比,修正后的首都机场飞机NOx、CO、HC和SO2排放增加了23.5%、2.3%、2.1%和18.1%.飞机排放的CO、HC、SO2和PM2.5月变化较小,NOx排放受飞机有效排放高度影响月波动较大.1~2月飞机污染物排放量处于全年最低水平,8月各污染物排放达到峰值.此外,飞机在爬升和滑行/慢车两种模式下污染物排放比例最大,分别占排放总量的37.7%与36.8%.  相似文献   

12.
我国水泥工业大气污染物排放量估算   总被引:10,自引:2,他引:8  
水泥工业是粉尘,SO2和NOx等多种大气污染物的重要排放源.根据各地水泥工业的工艺现状、活动水平、除尘器的除尘效率和污染物排放因子,估算了1995—2005年我国水泥工业生产过程中排放的粉尘,PM10,PM2.5,SO2,NOx,氟化物和CO等的排放量,并给出了2005年分省区、分工艺的排放清单.结果表明,污染物排放量与水泥活动水平呈正相关.1995年以来,随着水泥产量增加,污染物排放量增长迅速,2005年我国水泥工业排放排放粉尘520.69×104 t,PM10437.24×104 t,PM2.5301.06×104 t,SO2 86.09×104 t,NOx286.67×104 t,氟化物57.72×104t,CO1 987.97×104 t;山东、浙江、江苏、河北和广东等水泥生产大省污染物排放量较大,污染物排放总量占全国总排放量的46.6%,新型干法的推广应用有助于大气污染物的减排.   相似文献   

13.
在燃煤电厂实现大气污染物“近零排放”过程中,烟尘控制技术是关键,通过对除尘、脱硫、脱硝等先进环保技术的系统比较,提出了燃煤电厂大气污染物“近零排放”技术路线. 在地处长三角的国华舟山电厂4号机组采用高效低氮燃烧+SCR(选择性催化还原法)脱硝+旋转电极除尘+海水脱硫+湿式静电除尘的技术路线,ρ(烟尘)、ρ(SO2)、ρ(NOx)的实际排放值分别为2.46、2.76、19.80 mg/m3;在地处京津冀的国华三河电厂1号机组,采用高效低氮燃烧+SCR脱硝+低温省煤器+静电除尘(高效电源)+湿法脱硫+湿式静电除尘的技术路线,ρ(烟尘)、ρ(SO2)、ρ(NOx)的实际排放值分别为5、9、35 mg/m3. 实践表明,立足国情走煤炭清洁高效利用之路,燃煤电厂可以在低成本下实现大气污染物的“近零排放”. 通过对技术路线优化、低浓度污染物在线测量技术及“近零排放”中存在的一些问题进行分析和探讨,提出了燃煤电厂大气污染物控制技术的研究和发展方向. 估算结果表明,如果全国燃煤机组自2015年起采用“近零排放”技术,5 a内烟尘、SO2、NOx年均减排率分别可达19.0%、18.9%、18.5%.   相似文献   

14.
武洁  张志勇  刘显丽 《环境工程》2021,39(8):131-135
燃煤电厂机组负荷的变化与选择性催化还原(SCR)系统的各类参数(温度、含氧量、NOx、SO2/SO3转化率)联系紧密,各参数数值直接影响机组的运行。针对3组燃煤电厂的5种工况(30%、50%、70%、80%、100%)的现场实测数据,采用相关分析法,对各类参数进行相关性分析。结果表明:与机组负荷呈正相关的参数为烟气温度和SO2/SO3转化率;呈负相关的参数为烟气含氧量和SCR出口NOx浓度,但与SCR入口处NOx浓度没有显著相关性。该结果可为避免锅炉在中低负荷下出现NOx超标现象提供参考。  相似文献   

15.
辽宁省港口邻近区域海运废气排放测算   总被引:1,自引:1,他引:1       下载免费PDF全文
为准确测算沿海地区船舶废气排放量,基于试验数据确定了NOx、CO、HC和CO2排放因子;结合文献资料和海事局进出港船舶签证数据,采用基于船舶活动过程的方法测算了2014年辽宁省港口邻近区域〔距港口减速区外边界25 n mile(1 n mile=1 852 m)以外的边界线与港口陆地岸线所围成的区域〕海运废气排放清单. 结果表明:2014年辽宁省港口邻近区域海运NOx、CO、HC、CO2、SO2和PM(颗粒物)的排放量分别为11 827.1、971.4、399.6、1 097 426.5、11 654.1和959.2 t;散货船、集装箱船和油船3种主要类型船舶的NOx、CO、HC、CO2、SO2和PM的分担率之和分别为74.7%、77.8%、70.8%、68.0%、70.9%和70.6%;主机NOx、CO、HC、CO2、SO2和PM的分担率最大,分别为63.7%、63.0%、46.0%、40.4%、46.4%和45.3%;停泊工况下的NOx、CO、HC、CO2、SO2和PM排放量分别为3 318.3、281.7、168.3、520 194.9、4 894.0和411.5 t. 船舶降速运行、减少停港时间、燃用低硫油和向船舶供应岸电等措施能降低港口邻近区域海运废气排放. 基础数据缺乏或数据代表性不足给废气排放清单带来了一定的不确定性.   相似文献   

16.
苏昕  贺克斌  张强 《环境科学研究》2013,26(9):1022-1028
随着中国能源消耗和国际贸易的快速增长,中国国际贸易尤其是中美贸易对气候变化的影响受到了广泛关注,但国际贸易对于大气污染的影响却鲜见系统研究. 基于环境投入产出法和结构分解分析法,采用基于技术的、自下而上的大气污染物排放清单,探讨了中美贸易隐含的大气污染物排放问题. 结果表明:由于中国对美国出口贸易顺差较大且商品污染物排放强度较高,造成了中国对美国的出口贸易隐含着较大的污染物排放逆差. 2007年中国对美国出口贸易隐含的SO2、NOx和PM2.5的排放逆差分别为174.26×104、131.15×104和46.88×104t. 有行业针对性的污染物减排措施可以降低中美贸易隐含的污染物排放量;1997—2007年污染物燃烧排放因子和非燃烧直接排放强度的下降就可使出口贸易隐含的SO2和PM2.5排放量降低96.41%和226.26%. 占出口份额最高的机械类制造品的SO2、NOx和PM2.5排放强度分别为72.63、58.38和20.74t/108元,低于所有出口商品的污染物排放强度的平均值, 中国应加强这种高附加值、低污染物排放的商品出口.   相似文献   

17.
京津冀地区散烧煤与电采暖大气污染物排放评估   总被引:1,自引:0,他引:1       下载免费PDF全文
徐钢  王春兰  许诚  白璞 《环境科学研究》2016,29(12):1735-1742
散烧煤供暖是一种污染物排放量大、一次能源利用效率低的供暖方式,亟需寻找一种新的供暖方式替代散烧煤供暖.在对比评估散烧煤与电煤各种主要污染物排放量的基础上,提出直接电采暖和低温空气源热泵两种替代散烧煤供暖方案,以缓解京津冀地区大气污染,并对改造前后的污染物排放量和技术经济性进行分析;从区域污染物综合减排的战略角度提出对京津冀地区原散烧煤采暖用户进行低温空气源热泵供暖改造和燃煤电厂执行“超净排放”改造两种方案,并对两种方案的污染物减排效果进行了对比.结果表明:单位散烧煤的污染物排放量远高于电煤,其中散烧煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为17.12、2.80、6.37和9.80 g/kg,电煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为0.43、0.85、0.17和0.47 g/kg,散烧煤对综合PM2.5的贡献是电煤的20.9倍;直接电采暖和低温空气源热泵供暖均能有效减少污染物排放量,其中直接电采暖可使每户每年采暖期的SO2、NOx、烟尘和综合PM2.5分别减排66.38、7.15、24.79和36.96 kg,而采用低温空气源热泵的减排量分别为67.79、9.97、25.35和38.52 kg,但直接电采暖方式的一次能源利用效率(仅为33.7%)极低,因此不适合大面积推广;京津冀地区原散烧煤采暖用户在进行低温空气源热泵供暖改造后,其SO2、NOx、烟尘和综合PM2.5年减排量分别为24.47×104、3.60×104、9.15×104和13.91×104 t,燃煤电厂执行“超净排放”改造后相应年减排量分别为1.28×104、4.25×104、1.30×104和2.31×104 t,其中低温空气源热泵供暖改造后的综合PM2.5减排量达到燃煤电厂改造的6.0倍,并且年投资也较燃煤电厂改造低约4×108元.研究显示,采用低温空气源热泵供暖在污染物减排量、技术经济性和实施可行性等方面均具有优势.   相似文献   

18.
京津冀及周边地区水泥工业大气污染控制分析   总被引:1,自引:0,他引:1  
以京津冀及周边地区水泥工业为研究对象,基于产排污系数法,建立了水泥工业主要大气污染物排放计算方法,对2016年该地区水泥工业主要大气污染物排放控制水平进行了分析.结果表明:京津冀及周边地区2016年水泥工业SO2、NOx、PM(有组织)排放量分别达到3.2×104t、23.9×104t、9.7×104t,较2015年分别减少24.1%、18.2%、27.2%,各项污染物大幅下降.水泥工业PM无组织排放量占PM总排放量的45.4%,仍需要采取集中收集的方式加强治理.山东、河南是水泥工业SO2、NOx、PM、PM10、PM2.5重点排放来源,应通过化解过剩产能降低污染排放.从各工艺来看,新型干法工艺应考虑采用高效脱氮脱硫技术、协同处置技术、高效大型袋式除尘技术等新技术,进一步降低各项污染物的排放量;粉磨站也需进一步提高污染治理水平.  相似文献   

19.
非道路机械是大气污染物的重要来源,已经逐渐引起了人们的关注.本研究旨在建立2020年京津冀地区典型非道路机械排放清单,分析排放控制政策和成本.结果表明:2020年京津冀地区典型非道路机械CO、HC、NOx、PM2.5、SO2的排放量分别为286.96×103、232.17×103、364.30×103、34.15×103、4.14×103 t.农业机械的排放量明显大于建筑机械的排放量,约占总量的46.36%~91.62%.在综合情景(IS)下,2030年CO、HC、NOx、PM2.5、SO2的排放量与2020年基准情景(BAU)相比分别增加了-54.16%、-33.76%、-42.46%、-54.07%、-10.37%.在单一控制措施下,更新排放标准(UES)对5种污染物的减排效果最好,淘汰老旧非道路机械(CIV)对NOx和P...  相似文献   

20.
基于利用AMDAR数据确定大气混合层高度进而对飞机不同工作状态下的时间进行修正的计算方法,核算了2017年华北地区6座典型机场大气污染物排放量.结果显示,6座机场NOx、CO、VOC、SO2与PM2.5的排放总量分别为21504.2,7074.8,1424.0,1283.6和323.2t.飞机源NOx、CO、VOC与SO2的排放量远高于机场内其他污染源,而对PM2.5的排放贡献相差较小.HC与CO的排放主要集中在滑行阶段,占比分别为90.6%与90.2%,而NOx、SO2与PM2.5的排放主要集中在爬升阶段,排放占比分别为58.9%、38.7%和43.5%.6座机场1月份污染物排放量较低,在8月份达到峰值.基于本研究建立的天津滨海国际机场大气污染物排放清单,利用WRF-CAMQ模型研究机场排放对周边区域PM2.5浓度的影响.结果表明机场区域小时最大贡献浓度为3.24μg/m3;距离机场5km处的年均贡献浓度与小时最大贡献浓度分别为0.08和2.84μg/m3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号