首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerical simulations were carried out to investigate gyres within open lacustrine embayments subjected to parallel-to-shore currents. In such embayments, gyre formation occurs due to flow separation at the embayment’s upstream edge. High momentum fluid from the mixing layer between the embayment and offshore flows into the embayment and produces recirculating flow. Systematic numerical experiments using different synthetic embayment configurations were used to examine the impact of embayment geometry. Geometries included embayments with different aspect ratios, depths and embayment corner angles. The magnitudes of the recirculation and turbulent kinetic energy (TKE) in the embayment vary significantly for angles in the range 40°–55°. Embayments with corner angles less than 50° have much stronger recirculation and TKE, other parameters remaining the same. The numerical findings are consistent with gyre formation observed in two embayments located in Lake Geneva, Switzerland, and thus help explain flow patterns recorded in lacustrine shoreline regions.  相似文献   

2.
Consecutive groynes and embayments form dead water zones, where sedimentation and high concentrations of pollutants are often observed. It is thus very important to understand the mass and momentum exchange between the main channel and side cavities in rivers and hydraulic engineering structures. The spanwise gradient of the streamwise velocity near the junction produces small-scale turbulent vortices because of shear instability. Furthermore, large-scale horizontal circulation is also generated in the cavity zone. These coherent turbulent structures play a significant role in mass and sediment transfer at the boundary between the mainstream and embayment. However, the relation between turbulence and mass transfer is poorly understood. In this study, we performed particle image velocity and laser-induced fluorescence experiments using a laboratory flume, laser light sheets and a high-speed CMOS camera. We examined the exchange properties of a dye as a function of bed configuration and sedimentation effect. Both primary and secondary gyres were observed in the flat bed and downward-sloping bed, whereas the primary gyre was prevalent in the upward-sloping bed. Moreover, the horizontal circulation strongly affected the mass-transfer properties between the mainstream and side cavity.  相似文献   

3.
Channel confluences at which two channels merge have an important effect on momentum exchange and contaminant diffusion in both natural rivers and artificial canals. In this study, a three-dimensional numerical model, which is based on the Reynolds Averaged Navier–Stokes equations and Reynolds Stress Turbulence model, is applied to simulate and compare flow patterns and contaminant transport processes for different bed morphologies. The results clearly show that the distribution of contaminant concentrations is mainly controlled by the shear layer and two counter-rotating helical cells, which in turn are affected by the discharge ratio and the bed morphology. As the discharge ratio increases, the shear flow moves to the outer bank and the counter-clockwise tributary helical cell caused by flow deflection is enlarged, leading the mixing happens near the outer bank and the mixing layer distorted. The bed morphology can induce shrinkage of the separation zone and increase of the clockwise main channel helical cell, which is initiated by the interaction between the tributary helical cell and the main channel flow and strengthened by the deep scour hole. The bed morphology can also affect the distortion direction of the mixing layer. Both a large discharge ratio and the bed morphology could lead to an increase in mixing intensity.  相似文献   

4.
Predicting flow and mass transport in vegetated regions has a broad range of applications in ecology and engineering practice. This paper presents large eddy simulation (LES) of turbulent flow and scalar transport within a fully developed open-channel with submerged vegetation. To properly represent the scalar transport, an additional diffusivity was introduced within the canopy to account for the contribution of stem wakes, which were not resolved by the LES, to turbulent diffusion. The LES produced good agreement with the velocity and concentration fields measured in a flume experiment. The simulation revealed a secondary flow distributed symmetrically about the channel centerline, which differed significantly from the circulation in a bare channel. The secondary circulation accelerated the vertical spread of the plume both within and above the canopy layer. Quadrant analysis was used to identify the form and shape of canopy-scale turbulent structures within and above the vegetation canopy. Within the canopy, sweep events contributed more to momentum transfer than ejection events, whereas the opposite occurred above the canopy. The coherent structures were similar to those observed in terrestrial canopies, but smaller in scale due to the constraint of the water surface.  相似文献   

5.
6.
Eddy-resolving techniques have become a powerful tool to investigate shallow flows at both laboratory and field scale. In this paper several examples are given where high-resolution 3D numerical simulation are used to investigate the spatial development of mixing interfaces (MIs) forming in shallow environments like open channels with idealized and natural bathymetry where the bed friction plays a major role in the spatial development of the MI and associated large-scale turbulence. The focus is on the coherent structures forming within the MI and in its vicinity that control the momentum and mass exchange and heat transfer between the two sides of the MI. Examples include: (1) a MI developing in a flat-bed open channel downstream of a splitter wall separating two parallel fully-turbulent streams of different velocities, (2) a MI developing in a flat-bed open channel downstream of a 60 \(^{\circ }\) wedge separating two non-parallel fully turbulent streams of different velocities, (3) a MI developing downstream of a river confluence for cases with a large and, respectively, a small difference between the mean velocities of the two streams. Stratification effects due to unequal densities of the two incoming streams are also discussed, (4) a MI developing between a main rectangular straight channel and a series of shallow embayments present at one of the channel banks. Besides using available experimental data to demonstrate that eddy resolving techniques can accurately predict the structure of the MI and its development, the paper discusses new insights into the physics of these flows obtained based on the simulations. The paper also provides an overview of the main numerical approaches that can be used to simulate the unsteady dynamics of the large scale turbulence in flows containing shallow MIs.  相似文献   

7.
In the present article, the potential of embedded large eddy simulation (ELES) approach to reliably predict pollutant dispersion around a model building in atmospheric boundary layer is assessed. The performance of ELES in comparison with large eddy simulation (LES) is evaluated in several ways. These include a number of qualitative and quantitative comparisons of time-averaged and instantaneous results with wind tunnel measurements supplemented by statistical data analyses using scatter plots and standard evaluation metrics. Results obtained by both LES and ELES approaches show very good agreement with the experiment. However, addition of turbulence to mean flow at Reynolds averaged Navier–Stokes (RANS)–LES interface in ELES approach not only increases the turbulence intensity, it also results in larger values of turbulent kinetic energy (TKE) as well as a shorter reattachment length in the wake region. Accordingly, higher levels of TKE predicted by ELES increase the local intensity of concentration leading to shorter plume shapes as compared with LES. In general, ELES shows better agreement with experiment on the surfaces of model building and also in the downstream wake region. In terms of computational costs, the CPU time required to obtain statistical values in ELES is about 49 % lower than that of LES and the number of iterations per time step is also reduced by 55 % as compared with LES.  相似文献   

8.
The paper reports results of large eddy simulations of lock exchange compositional gravity currents with a low volume of release advancing in a horizontal, long channel. The channel contains an array of spanwise-oriented square cylinders. The cylinders are uniformly distributed within the whole channel. The flow past the individual cylinders is resolved by the numerical simulation. The paper discusses how the structure and evolution of the current change with the main geometrical parameters of the flow (e.g., solid volume fraction, ratio between the initial height of the region containing lock fluid and the channel depth, ratio between the initial length and height of the region containing lock fluid) and the Reynolds number. Though in all cases with a sufficiently large solid volume fraction the current transitions to a drag-dominated regime, the value of the power law coefficient, α, describing the front position’s variation with time (x f  ~ t α , where t is the time measured from the removal of the lock gate) is different between full depth cases and partial depth cases. The paper also discusses how large eddy simulation (LES) results compare with findings based on shallow-water equations. In particular, LES results show that the values of α are not always equal to values predicted by shallow water theory for the limiting cases where the current height is comparable, or much smaller, than the channel depth.  相似文献   

9.
We have developed a numerical method to simulate the transport of non-sorbing contaminants within the sediment layer of a stream and the leaching of these contaminants in the steam. Typical stream bottom surfaces are uneven with triangularly shaped undulation forms. The flow of the water above such triangular surfaces causes external pressure changes that result in a “pumping effect” and a secondary flow within the sediment. The latter causes a significant contaminant advection within the sediment layer. The flow field in the porous sediment layer is obtained by solving numerically Darcy’s equations. The unsteady mass transfer equation is solved by using a finite-difference method with an up-wind scheme. The effects of parameters, such as channel slope, hydraulic head and dispersion, are studied by quantitatively comparing the numerical results of the total mass flow rate from the contaminant source, the concentration front propagation, and the contaminant mass flow rate into the water column. The “pumping effect,” increases the flow in the vertical direction and, thus, enhances the vertical advective mass transport of the contaminant. This bedform-shape induced flow is largely responsible for the mass transfer of contaminants into the water column. The numerical results also show that the mechanical dispersion inside the sediment bed will significantly increase the contaminant mass flow rate from the source.  相似文献   

10.
The effects of planform geometry and momentum flux ratio on thermal mixing at a stream confluence with concordant bed morphology are investigated based on numerical simulations that can capture the dynamics of large-scale turbulence. In two simulations, the bathymetry and asymmetrical planform geometry are obtained from field experiments and the momentum flux ratio is set at values of one and four. These two conditions provide the basis for studying differences in thermal mixing processes at this confluence when the wake mode and the Kelvin–Helmholtz mode dominate the development of coherent structures within the mixing interface (MI). The effects of channel curvature and angle between the two incoming streams on thermal mixing processes are investigated based on simulations conducted with modified planform geometries. Two additional simulations are conducted for the case where the upstream channels are parallel but not aligned with the downstream channel and for the zero-curvature case where the upstream channels are parallel and aligned with the downstream channel. The simulations highlight the influence of large-scale coherent structures within the MI and of streamwise-oriented vortical (SOV) cells on thermal mixing processes within the confluence hydrodynamics zone. Simulation results demonstrate the critical role played by the SOV cells in promoting large-scale thermal mixing for cases when such cells form in the immediate vicinity of the MI and in modifying the shape of the thermal MI within cross sections of the downstream channel—predictions consistent with empirical measurements of thermal mixing at the confluence. The set of numerical simulations reveal that the degree of thermal mixing occurring within the confluence hydrodynamic zone varies dramatically with planform geometry and incoming flow conditions. In some cases thermal mixing at the downstream end of the confluence hydrodynamic zone is limited to the MI and its immediate vicinity, whereas in others substantial thermal mixing has occurred over most of the cross-sectional area of the flow. Overall, the simulations highlight the flow conditions and the controls of these conditions that influence mixing within the immediate vicinity of a confluence.  相似文献   

11.
Past studies made between 1938 and the mid-1970's of coastal embayments between northern Baja California and Oregon (USA) established the presence of only one species of the calanoid copepod genus Pseudodiaptomus, P. euryhalinus. This species is endemic to warm temperate latitudes of western North America. We now report the presence of breeding populations of the Asian calanoid copepod P. marinus in two Southern California embayments, Mission Bay and Agua Hedionda Lagoon. The Mission Bay population was monitored monthly from December 1986 to June 1987 and showed evidence of continuous breeding and growth. The regional, endemic species, P. euryhalinus, was not observed in either embayment. Mechanisms that might account for the apparent recent introductions of P. marinus into Southern California include dispersion by ocean circulations and transport by transoceanic ships. In the present case, the explanation is that the introduction is most likely a direct consequence of aquaculture projects. Remaining to be confirmed by systematic sampling is the apparent disappearance of P. euryhalinus from embayments dominated by P. marinus.  相似文献   

12.
Results are presented from a series of large-scale experiments investigating the internal and near-bed dynamics of bi-directional stratified flows with a net-barotropic component across a submerged, trapezoidal, sill obstruction. High-resolution velocity and density profiles are obtained in the vicinity of the obstruction to observe internal-flow dynamics under a range of parametric forcing conditions (i.e. variable saline and fresh water volume fluxes; density differences; sill obstruction submergence depths). Detailed synoptic velocity fields are measured across the sill crest using 2D particle image velocimetry, while the density structure of the two-layer exchange flows is measured using micro-conductivity probes at several sill locations. These measurements are designed to aid qualitative and quantitative interpretation of the internal-flow processes associated with the lower saline intrusion layer blockage conditions, and indicate that the primary mechanism for this blockage is mass exchange from the saline intrusion layer due to significant interfacial mixing and entrainment under dominant, net-barotropic, flow conditions in the upper freshwater layer. This interfacial mixing is quantified by considering both the isopycnal separation of vertically-sorted density profiles across the sill, as well as calculation of corresponding Thorpe overturning length scales. Analysis of the synoptic velocity fields and density profiles also indicates that the net exchange flow conditions remain subcritical (G < 1) across the sill for all parametric conditions tested. An analytical two-layer exchange flow model is then developed to include frictional and entrainment effects, both of which are needed to account for turbulent stresses and saline entrainment into the upper freshwater layer. The experimental results are used to validate two key model parameters: (1) the internal-flow head loss associated with boundary friction and interfacial shear; and (2) the mass exchange from the lower saline layer into the upper fresh layer due to entrainment.  相似文献   

13.
A series of laboratory experiments has been carried out to investigate the passage of an internal solitary wave of depression over a bottom ridge, in a two-layer fluid system for which the upper and lower layer is linearly-stratified and homogeneous respectively. Density, velocity and vorticity fields induced by the wave propagation over the ridge have been measured simultaneously at three locations, namely upstream, downstream and over the ridge crest, for a wide range of model parameters. Results are presented to show that wave breaking may occur for a sufficiently large wave amplitude and a strong ridge blockage factor, with accompanying mixing and overturning. Density field data are presented (i) to illustrate the overturning and mixing processes that accompany the wave breaking and (ii) to quantify the degree of mixing in terms of the wave and ridge parameters. For weak encounters, good agreement is obtained between the laboratory experimental results (velocity and vorticity fields induced by the wave propagation) and the predictions of a recently-developed fully nonlinear theory. Discrepancies between theory and experiment are discussed for cases in which breaking and mixing occur.  相似文献   

14.
In the present paper, we use numerical simulation to investigate currents, mixing and water renewal in Barcelona harbour under typical conditions of wind forcing for the winter season. This site is of particular importance due to the interplay between touristic and commercial activities, requiring detailed and high-definition studies of water quality within the harbour. We use Large Eddy Simulation (LES) which directly resolves the anisotropic and energetic large scales of motion and parametrizes the small, dissipative, ones. Small-scale turbulence is modelled by the anisotropic Smagorinsky model (ASM) to be employed in presence of large cell anisotropy. The complexity of the harbour is modelled using a combination of curvilinear, structured, non-staggered grid and the immersed boundary method. Boundary conditions for wind and currents at the inlets of the port are obtained from in-situ measurements. Analysis of the numerical results is carried out based on both instantaneous and time-averaged velocity fields. First- and second-order statistics, such as turbulent kinetic energy and horizontal and vertical eddy viscosities, are calculated and their spatial distribution is discussed. The study shows the presence of intense current in the narrow and elongated part of the harbour together with sub-surface along-shore elongated rolling structures (with a time scale of a few hours), and they contribute to the vertical water mixing. Time-averaged velocity field reveals intense upwelling and downwelling zones along the walls of the harbour. The analysis of second-order statistics shows strong inhomogeneity of turbulent kinetic energy and horizontal and vertical eddy viscosities in the horizontal plane, with larger values in the regions characterized by stronger currents. The water renewal within the port is quantified for particular sub-domain regions, showing that the complexity of the harbour is such that certain in-harbour basins have a water renewal of over five days, including the yacht marina area. The LES solution compares favourably with available current-meter data. The LES solution is also compared with a RANS solution obtained in literature for the same site under the same forcing conditions, the comparison demonstrating a large sensitivity of properties to model resolution and frictional parametrization.  相似文献   

15.
Dynamics of the surface layer in different liquids is examined by means of infrared thermography of the surface and simultaneous velocity fields measurements using surface and infrared Particle Image Velocimetry. This technique allows measurements and comparison of two velocity fields—at the surface and at small depth about 50–200 μm. In distilled water the velocity fields at the surface and at small depth exhibit significant dissimilarity. The flow field below the surface is essentially 3D, whereas the surface flow is characterized by vanishing 2D divergence of velocity, indicating predominantly planar motion. In contrast, in ethanol–butanol mixture two velocity fields are well correlated, both corresponding to 3D flow with continuous surface renewal. Thermal patterns, observed at the surface, and the flow field structure in different liquids are associated with different boundary conditions for velocity at the surface. Water surface is seldom renewed, which inhibits heat and mass exchange between the liquid and atmosphere. However, absence of vertical advection also enables organisms to live within the surface layer, to stand and walk on the free surface. This is illustrated by the difficulties a water strider faces on the surface of ultrapure water, which exhibits Marangoni convection.  相似文献   

16.
This study presents a large-eddy simulation (LES) study of the convective boundary layer on August 1, 1999 over Philadelphia, PA during a summer ozone episode. The study is an evaluation of the Colorado State University's Regional Atmospheric Modeling System Version 4.3 (RAMS4.3) with the LES option using Northeast Oxidant and Particulate Study (NE-OPS) data. Simulations were performed with different imposed sensible heat fluxes at the ground surface. The model was initialized with the atmospheric sounding data collected at Philadelphia at 1230 UTC and model integrations continued till 2130 UTC. The resulting mean profiles of temperature and humidity obtained from the LES model were compared with atmospheric soundings, tethered balloon and aircraft data collected during the NE-OPS 1999 field campaign. Also the model-derived vertical profiles of virtual temperature were compared with NE-OPS Radio Acoustic Sounder System (RASS) data while the humidity profiles were compared with NE-OPS lidar data. The comparison of the radiosonde data with the LES model predictions suggests that the growth of the mixing layer is reasonably well simulated by the model. Overall, the agreement of temperature predictions of the LES model with the radiosonde observations is good. The model appears to underestimate humidity values for the case of higher imposed sensible heat flux. However, the humidity values in the mixing layer agree quite well with radiosonde observations for the case of lower imposed sensible heat flux. The model-predicted temperature and humidity profiles are in reasonable agreement with the tethered balloon data except for some small overestimation of temperature at lower layers and some underestimation of humidity values. However, the humidity profiles as simulated by the model agree quite well with the tethered balloon data for the case of lower imposed sensible heat flux. The model-predicted virtual temperature profile is also in better agreement with RASS data for the case of lower imposed sensible heat flux. The model-predicted temperature profile further agrees quite well with aircraft data for the case of lower imposed heat flux. However, the relative humidity values predicted by the model are lower compared with the aircraft data. The model-predicted humidity profiles are only in partial agreement with the lidar data. The results of this study suggest that the explicitly resolved energetic eddies seem to provide the correct forcing necessary to produce good agreement with observations for the case of an imposed sensible heat flux of 0.1 K m s–1 at the surface.  相似文献   

17.
Iron water treatment residues are a free by-product with high concentration of iron oxides Iron water treatment residues has a large potential for arsenic sorption Soils are highly contaminated by arsenic at wood preservation sites Iron water treatment residues were added to hot spots contaminated with arsenic The addition led to significant decrease in leaching of arsenic from the contaminated soil Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe-WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by common contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale amendment a 100 m2 test site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and pore water concentrations of arsenic was generally higher. Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu. With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching of Cu, Cr and As constitutes a risk for groundwater and freshwater.  相似文献   

18.
A site- and receptor-specific risk management strategy for groundwater pollution based on the measurement of contaminant mass flux is proposed. The approach is useful and compatible with the demands formulated in the European Water Framework Directive, its Groundwater Daughter Directive and the regulations applicable in the EU member states. The proposed CMF method focuses on the following: (1) capture zones, (2) the location of control planes, (3) the definition of the maximum allowed contaminant mass discharge and (4) contaminant mass flux measurements. For every control plane, such a maximum allowed contaminant mass discharge is derived and is crucial for the receptor risk management strategy. The method is demonstrated for a large area of groundwater pollution present in the industrial area of Vilvoorde–Machelen located in Flanders, Belgium.  相似文献   

19.
The stability, mixing and effect of downstream control on axisymmetric turbulent buoyant jets discharging vertically into shallow stagnant water is studied using 3D Reynolds-averaged Navier–Stokes equations (RANS) combined with a buoyancy-extended k –ε model. The steady axisymmetric turbulent flow, temperature (or tracer concentration) and turbulence fields are computed using the finite volume method on a high resolution grid. The numerical predictions demonstrate two generic flow patterns for different turbulent heated jet discharges and environmental parameters (i) a stable buoyant discharge with the mixed fluid leaving the vertical jet region in a surface warm water layer; and (ii) an unstable buoyant discharge with flow recirculation and re-entrainment of heated water. A stratified counterflow region always appears in the far-field for both stable and unstable buoyant discharges. Provided that the domain radius L exceeds about 6H, the near field interaction and hence discharge stability is governed chiefly by the jet momentum length scale to depth ratio lM/H, regardless of downstream control. The near field jet stability criterion is determined to be lM/H = 3.5. A radial internal hydraulic jump always exists beyond the surface impingement region, with a 3- to 6-fold increase in dilution across the jump compared with vertical buoyant jet mixing. The predicted stability category, velocity and temperature/concentration fields are well-supported by experiments of all previous investigators.  相似文献   

20.
G.Q. Chen  L. Zeng  Z. Wu 《Ecological modelling》2010,221(24):2927-2937
As a continuation of the modelling on ecological degradation and hydraulic dispersion of pollutant emission into an idealized two-dimensional free-surface wetland flow (Zeng, L., Chen, G.Q., 2009b. Ecological degradation and hydraulic dispersion of contaminant in wetland. Ecol. Model., doi:10.1016/j.ecolmodel.2009.10.024), an ecological risk assessment model for the typical case of a pulsed contaminant emission into a realistic three-dimensional wetland channel flow is presented in this paper for the fate of cross-sectional mean concentration under environmental dispersion. An environmental dispersion model for the mean concentration is devised as an extension of Taylor’s classical analysis on dispersion in fluid flows. The velocity distribution and the environmental dispersivity in the fully developed steady flow through the wetland is found and illustrated with limiting cases covering various known solutions for the porous media flow between parallel plates, flow in a shallow wetland, sweeping flow in a densely vegetated wetland, and single phase flow in a channel. Obtained by Aris’s method of moments, the environmental dispersivity is shown characterized with multi-scale asymptotic time variations with stem dominated stage, transitional stage, and width-depth-stem dominated stage. Based on the solution for the evolution of contaminant cloud in the wetland channel flow, critical length and duration of the contaminant cloud with concentration beyond given environmental standard level are concretely illustrated for typical pollutant constituents in wastewater emission. Under the same emission intensity and environmental standard, the duration of contaminant cloud in the wetland channel is revealed shorter than that in a free surface wetland, due to the lateral effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号