首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Experimental investigation of bubbly flow and turbulence in hydraulic jumps   总被引:1,自引:1,他引:0  
Many environmental problems are linked to multiphase flows encompassing ecological issues, chemical processes and mixing or diffusion, with applications in different engineering fields. The transition from a supercritical flow to a subcritical motion constitutes a hydraulic jump. This flow regime is characterised by strong interactions between turbulence, free surface and air–water mixing. Although a hydraulic jump contributes to some dissipation of the flow kinetic energy, it is also associated with increases of turbulent shear stresses and the development of turbulent eddies with implications in terms of scour, erosion and sediment transport. Despite a number of experimental, theoretical and numerical studies, there is a lack of knowledge concerning the physical mechanisms involved in the diffusion and air–water mixing processes within hydraulic jumps, as well as on the interaction between the free-surface and turbulence. New experimental investigations were undertaken in hydraulic jumps with Froude numbers up to Fr = 8.3. Two-phase flow measurements were performed with phase-detection conductivity probes. Basic results related to the distributions of void fraction, bubble frequency and mean bubble chord length are presented. New developments are discussed for the interfacial bubble velocities and their fluctuations, characterizing the turbulence level and integral time scales of turbulence representing a “lifetime” of the longitudinal bubbly flow structures. The analyses show good agreement with previous studies in terms of the vertical profiles of void fraction, bubble frequency and mean bubble chord length. The dimensionless distributions of interfacial velocities compared favourably with wall-jet equations. Measurements showed high turbulence levels. Turbulence time scales were found to be dependent on the distance downstream of the toe as well as on the distance to the bottom showing the importance of the lower (channel bed) and upper (free surface) boundary conditions on the turbulence structure.  相似文献   

2.
We propose, discuss and validate a theoretical and numerical framework for sediment-laden, open-channel flows which is based on the two-fluid-model (TFM) equations of motion. The framework models involve mass and momentum equations for both phases (sediment and water) including the interactive forces of drag, lift, virtual mass and turbulent dispersion. The developed framework is composed by the complete two-fluid model (CTFM), a partial two-fluid model (PTFM), and a standard sediment-transport model (SSTM). Within the umbrella of the Reynolds-Averaged Navier-Stokes (RANS) equations, we apply K–ε type closures (standard and extended) to account for the turbulence in the carrier phase (water). We present the results of numerical computations undertaken by integrating the differential equations over control volumes. We address several issues of the theoretical models, especially those related to coupling between the two phases, interaction forces, turbulence closure and turbulent diffusivities. We compare simulation results with various recent experimental datasets for mean flow variables of the carrier as well as, for the first time, mean flow of the disperse phase and turbulence statistics. We show that most models analyzed in this paper predict the velocity of the carrier phase and that of the disperse phase within 10% of error. We also show that the PTFM provides better predictions of the distribution of sediment in the wall-normal direction as opposed to the standard Rousean profile, and that the CTFM is by no means superior to the PTFM for dilute mixtures. We additionally report and discuss the values of the Schmidt number found to improve the agreement between predictions of the distribution of suspended sediment and the experimental data.  相似文献   

3.
To learn how organisms apportion space in the open ocean, biological oceanographers have sought to improve temporal and spatial resolution of ocean sampling systems. Their objectives are to simultaneously measure physical, chemical and biological structure in the water column in order to find significant correlations that may reveal underlying processes. Here we report one such correlation between intense peaks of bioluminescence and density discontinuities in the water column. Intensified video recordings made in these bioluminescent “hot spots” were analyzed with a computer image-recognition program that identifies organisms based on the temporal and spatial characteristics of their luminescent displays. Based on this analysis, the source of the “hot spots” was found to be very thin layers (0.5 m) of the bioluminescent copepod Metridia lucens present at from 5 to 100 times average background concentrations. Given the recent discovery that the vertical distribution of marine snow is also strongly correlated with density discontinuities in the water column, we suggest that this finding may provide a possible explanation for the disparity between estimated energy requirements of marine copepods and measurements of average in situ food concentrations. The energy costs associated with locating food-rich micro-patches is greatly reduced if those patches are spread out into very thin layers, because the search strategy can be reduced from three dimensions to one. Received: 28 December 1998 / Accepted: 12 April 1999  相似文献   

4.
The evaporation of organic contaminants of different volatility from a porous sandfill was investigated in laboratory experiments. A significant decrease of the evaporation rate was observed under conditions of compacted fill, at high concentrations of the low-volatile component. This can be explained by the formation of a layer with a low mass fraction of the solvent near the gas-phase boundary of the contaminated zone. The term ?self-encapsulation” is suggested for this phenomenon. Theoretical considerations show that this effect can occur if a volatile component evaporates from a mixture with a substance of low volatility and if the total mass transfer resistance is mainly within the contaminant phase. The formation of a solid layer at the surface can enhance this encapsulating effect for the remaining volatile material. A similar behaviour can be expected for contaminants consisting of components of different solubility which get in contact with flowing water.  相似文献   

5.
The vertical diffusional mass (solute) transfer through a suspended sediment layer, e.g. at the bottom of a lake, reservoir or estuary, by the propagation of velocity fluctuations from above was investigated. The attenuation of the velocity fluctuations in the suspension layer and the associated effect on solute transfer through the suspension layer was simulated. To represent large eddies traveling downstream in water over a high-concentration suspended sediment layer, a streamwise velocity fluctuation moving in downstream direction was imposed along the upper boundary of the suspension layer. Velocity fluctuations and downstream velocity were normalized by the shearvelocity (U*) at the top of the suspension layer. Streamwise and vertical velocity components inside the suspension layer, were obtained from the 2-D continuity and the Navier–Stokes equations. The persistence of turbulence with depth—as it penetrates from the overlying water into the suspension layer—was found to depend on its amplitude, its period, and on the apparent viscosity of the suspension. The turbulence was found to propagate efficiently into the suspension layer when its frequency is low, and the apparent viscosity of the suspension is high. Effects on vertical mass transfer were parameterized by penetration depth and effective diffusion coefficient, and related to apparent viscosity of the suspension, Schmidt number and shear velocity on top of the suspension layer. The enhancement of turbulence penetration by viscosity is similar to the flow near an oscillating flat plate (Stokes’ second problem), but is opposite to turbulence penetration into a stationary porous and permeable sediment bed. The information is applicable to water quality modeling mear the sediment/water interface of lakes, river impoundments and estuaries.  相似文献   

6.
The topography and motion of contaminant plumes in groundwater may be determined by surveying the three-dimensional distribution of contaminant freights [1] as well as through a period-integral monitoring by contaminant dosimeters [1]. Conventional methods of taking water samples for chemical analysis cannot fulfill any of these requirements. Sorption active passive collectors suitable for corresponding surveys in gaseous phases are unsuitable for examination in aquifers. Passive collectors for the examination of undisturbed aquifers represent the central part of a probing device system developed by the authors for monitoring chemical and hydraulic parameters within all kinds of aquifers. These passive collectors permit both a determination of the relative contaminant freights at deliberate vertical spacing of vertically ordered measuring points, and period-integrating detection of vertical profiles of relative contaminant freights. The easy-to-handle passive collectors are suitable for the collection of organic and inorganic contaminants and may be evaluated by standardized chemical analysis methods. In this way, passive collectors fulfill the essential prerequisites for purpose-oriented monitoring of contaminant plumes. Moreover, passive collectors for ground water monitoring are well suited for the in situ-examination of any other aquifer, both still and fluent, regardless of its depth or extent. Examples of application may be sewage ducts, sewage plants, rivers, lakes, oceans, water samples and especially the identification of contaminants and trace substances.  相似文献   

7.
In this work we address the role of turbulence on mixing of clear layer of fluid with sediment-laden layer of fluid at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the sediment-laden layer, or alternatively, as the transport of sediment into the top sediment-free flow. This process is governed by four parameters—Reynolds number of the flow \(Re_\tau\), non-dimensional settling velocity of the sediment (proxy for sediment size) \(\tilde{V}\), Richardson number \(Ri_\tau\) and Schmidt number Sc. For this work we have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. In the simple model considered here, the flow’s momentum and turbulence pre-exists over the entire layer of fluid, while the sediment is initially confined to a layer close to the bed. Mixing of sediment-free fluid with the sediment-laden layer is associated primarily with upward transport of sediment and buoyancy. There is no simultaneous upward transport of fluid momentum and turbulence into the sediment-free fluid layer, which is already in motion and turbulent. The analysis performed shows that the ability of the flow to transport a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are transported across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. This behavior of the flow is not seen for larger particles. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the time evolution of the center of mass of the sediment-laden layer and the vertical location of the sediment-free/sediment-laden interface.  相似文献   

8.
Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are indigenous to an urban estuary contaminated with persistent and bioaccumulative contaminants (dioxin-like compounds, or DLCs) that are particularly toxic to the early development of fish. We conducted laboratory challenge experiments to compare mummichog embryos and larvae from reference sites and this highly contaminated site [New Bedford Harbor (NBH), Massachusetts, USA] for their sensitivity to DLCs. While there was variation in DLC-responsiveness within each group, fish from NBH were profoundly less sensitive to DLCs than reference fish. Specifically, concentrations of DLCs similar to those measured in NBH-collected mummichog eggs were lethal to reference embryos. Further, DLC-responsiveness was inherited and independent of maternal contaminant contributions. These findings are consistent with the conclusion that DLC contamination in NBH has contributed to the selection of fish that are resistant to the short-term toxic effects of these environmental-contaminant exposures. This adaptation may be a critical mechanism by which fish populations persist in this highly contaminated site. Further evaluation of this ecosystem may provide important information concerning the direct and indirect consequences of this “unnatural” selection. Received: 12 July 1998 / Accepted: 16 January 1999  相似文献   

9.
The enhancement of solute diffusivities within coastal surficial sediments as a result of wave action is examined. Fluctuating pressure gradients associated with passing waves cause interstitial water motions leading to enhanced diffusivities through the mechanism of shear dispersion. Wave amplification of diffusivities is likely to be greatest for waves of period 10 s, in shallow water, over a bottom of coarse grain. Diffusivity enhancement of hundreds of times molecular diffusivity is achievable. The mechanism is distinct from, but complements, the mechanism of rotational dispersion which has been previously described. Other mechanisms that enhance solute transport within surficial sediments rely on the interaction between wave-driven or steady flow over bottom obstructions such as biogenic structures or sand ripples. It is suggested that while the resulting advective flows may dominate solute transport within the top few 10 s of centimeters of the sediment column, shear dispersion may be more important deeper within the sediment. In any event, in contrast to these other mechanisms, shear dispersion is operative even when the seabed is flat. Application of the theory to sediments of the South Atlantic Bight would suggest that shear dispersion is capable of explaining a major part of the interstitial transport inferred from measurements.  相似文献   

10.
 Early development of the Antarctic sea urchin Sterechinus neumayeri was examined under two differ-ent culture regimes: one to simulate development near-bottom (“demersal development”) and the other to simulate the development of embryos in the water column (“pelagic development”). When embryos of both treatments reached the hatching blastula stage at 5 d post-fertilization (−1.5 °C), the blastulae that had undergone demersal development evidenced significant differences (by ANOVA or suitable non-parametric comparison) in the following: a thicker blastoderm layer (12%, P < 0.001), higher ash-free dry weights (19%, P < 0.01), lower mass-specific respiration rates (50%, P < 0.001), higher incorporation rates of 35S-methionine into protein (23%, P < 0.003), and a differential pattern of protein synthesis. When embryos developed demersally, they remained in the jelly-coat material released with the eggs at spawning. Quantitative isolation of this jelly-coat material in S. neumayeri demonstrated that it contained a significant amount of organic matter, 115 ng ash-free dry mass per egg, equivalent to 17% of the egg's initial organic mass. Uptake of external nutrients during embryogenesis may be a significant component of the physiological energetics of this polar invertebrate by allowing the utilization of jelly-coat material released by a female during spawning. Received: 21 April 1999 / Accepted: 5 June 2000  相似文献   

11.
We test the hypothesis that echolocation behavior can be used to find the border between bat habitats. Assuming that bats react to background targets in “edge space” but not in “open space”, we determined the border between these two habitat types for commuting individuals of the parti-colored bat Vespertilio murinus. We recorded sequences of bats’ echolocation signals while they flew parallel to the walls of large buildings and to the ground and determined the signals’ average bandwidth, duration, and pulse interval. These parameters varied systematically with the estimated horizontal and vertical distances between the bats and the background. A distinct effect of horizontal distance to the background on echolocation behavior was found for horizontal distances of less than 6 m, thus indicating the border between edge and open space. Only a few bats flew at vertical distances below 5 m. However, enough passages at vertical distances of 5 m and above indicated that the vertical border is somewhere below a distance of 5 m. Within edge space, V. murinus reacted to the background by reducing signal duration, increasing bandwidth at closer distances, and often emitting one signal per wing beat. In open space, signal parameters did not vary as a function of distance to the background. There, V. murinus emitted the longest signals with the narrowest bandwidth and often made one or two wing beats without emitting a pulse. With our data we support with statistical methods the hypothesis that echolocation behavior reveals the border between the habitat types “edge” and “open space”.  相似文献   

12.
Water is an important resource for domestic, industrial, agricultural and recreational purposes. The quality of water is however significantly deteriorating due to the accumulation of organic pollutants in aqueous systems. Conventional water treatment technologies fail to remove these contaminants to desirable levels. Recent studies have revealed that cyclodextrin nanoporous polymers are capable of absorbing pollutants from water to parts per billion levels. We have demonstrated that functionalised cyclodextrin polymers have enhanced absorption capacities for some organic pollutants. Here we report the synthesis of several insoluble monosubstituted cyclodextrin polymers or “nanosponges”. We show that these polymers have improved abilities in the absorption of p-nitrophenol and pentachlorophenol from aqueous solutions.  相似文献   

13.
沉积物毒性鉴别评估用于确定造成沉积物整体毒性测试中观察到有害效果的原因。然而在多污染物的情况下,将总体毒性划分为为不同个体污染物单独造成的毒性的方法存在很多问题。利用一个有着多重输入与相关污染物的站点数据,我们为毒性鉴别评估提出一种通过追踪毒性单位(TUs)来确定是否囊括全部毒性的方法。首先确定出沉积物整体的毒性水平,然后将毒性来源划分至几种污染物大类,例如氨类,金属,非极性有机物等。本文中毒性很大程度上来源于非极性有机物,所以在萃取沉积物之后,将萃取物重新加回稀释水中以检测毒性的复原。每一部分污染物的毒性占比由溶剂梯度测量,并进行毒性检测。目标占比由气相色谱-质谱分析得到,从而鉴定出与特定成分相关的毒性。之后对这些成分相关的毒性单位进行测定以确定可能的原因组合和是否已囊括全部毒性。数据表明毒性既与已有化合物相关,又与新兴污染物相关,而两种污染物对于总体毒性的具体贡献则随实验地点改变。
精选自Howard C. Bailey, Catherine A. Curran, Peter Arth, Bonnie P. Lo, Rich Gossett. Application of Sediment Toxicity Identification Evaluation Techniques to a Site with Multiple-Contaminants. Environmental Toxicology and Chemistry: Volume 35, Issue 10, pages 2456–2465, October 2016. DOI: 10.1002/etc.3488
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3488/full
  相似文献   

14.
It has been hypothesized that marine fish larvae in the advanced stages of starvation would show increased density (ρ = mass volume−1) from water loss due to osmoregulation failure. Changes in larval buoyancy are currently attributed to swim bladder regulation and protein synthesis or catabolism. Osmoregulation-related changes in density is an alternative mechanism, the importance of which remains untested in the laboratory and the influence of which on vertical distributions is unknown. We provide evidence that loss of osmotic control is a plausible mechanism for increased density of larval cod (Gadus morhua L.). Furthermore, our results show that this mechanism is not restricted to larvae in the advanced stages of starvation. “Relative” larval densities are estimated using a modified density gradient. We use a gravimetric method to separate the effects of nutrition from osmoregulation failure. We assessed the importance of sampling strata on estimates of larval density. Proportional sampling within three depth strata (stratified sample) produced the least biased method for determining the “average” density of a population of larvae in laboratory culture. Larvae sampled from the bottom third of the culture tank were significantly more dense then those sampled from the surface. This was true for larvae of all ages. The average change in density from hatching till death from starvation for larvae sampled in the surface stratum was nominal (Δρ = 5.0 × 10−4 g cm−3), while the change for those sampled from the bottom stratum was large (Δρ = 3.8 × 10−3 g cm−3). These large density differences suggest that larvae sampled from the bottom stratum were either osmotically stressed or were facultatively changing their density via regulatory pathways. Preliminary observations suggest that vitality is lower amongst those larvae which are sampled near the bottom. The small change in average density of larvae sampled from the surface stratum was due to starvation. The density differences we observed between “osmotically stressed” and “starving” larvae could readily have been misconstrued as differences in feeding and growth experienced by individual larvae. The potential bias of increased density from osmoregulation failure must be considered as a factor in experimental designs developed to assess the effect of fed and starved treatments on buoyancy for larvae of all ages. The simple bioassay we describe may prove useful both as a means of assessing larval condition and as a mechanism for evaluating factors affecting larval vertical distributions in the field. Received: 13 January 1997 / Accepted: 3 February 1997  相似文献   

15.
The spatial relationships and linkage of the detrital flows among the water column, the sediment and the oyster Crassostrea gigas cultured in the water column were examined by using stable carbon isotopes (δ13C) in a tropical shallow lagoon from October 1996 to June 1997. The lagoon is located in southwestern Taiwan and is isolated from the sea by sand barriers except at two tidal inlets. It receives freshwater mainly from two rivers. A total of 12 stations were set up along three transect lines, each running across the lagoon from riverine to tidal inlet localities. The δ13C values of the water-column POM exhibited a marked sea–river gradient, with values depleted from a high of −21.7‰ at seaward stations to a low of −28.2‰ at riverine stations; those in the sedimentary POM (<62 μm grain size) also revealed this trend, but to a lesser extent. Oysters of two known ages, 6 months old (“old oysters”) and newly settled individuals (“young oysters”), were transplanted from one station to each of the remaining stations, while some were left at the original station. Values of δ13C in the muscle of transplanted oysters changed in parallel with the sea–river gradient of δ13C in POM (decreasing from −16.0 to −18.5‰ in old oysters and from −16.8 to −21.9‰ in young ones). The spatial sea–river gradient of the oyster's δ13C is related not only to the distance between the site that the oyster inhabits and sea or riverine environment, but also to the tidal flow pattern that surrounds its feeding place. Although the δ13C value of the sedimentary POM was correlated with that of the water-column POM, the δ13C value of the oyster tissue was significantly correlated with that of the water-column POM, but not with that of the sedimentary POM. This suggests that the oyster feeds primarily on water-column rather than sedimentary POM. Received: 30 April 1999 / Accepted: 15 December 1999  相似文献   

16.
The concepts and algorithms of the Baldwin, Nye and Tinker model describing solute movement from bulk soil solution to roots (DIFMAS) and a model of solute dynamics and accumulation in plant tissues and litter (DRYADS) are presented. Foliar uptake of solutes and gases are included in the DRYADS code. These models form components in a coupled system of models having hourly resolution of carbon, water, and solute dynamics in terrestrial ecosystems. Applications showing successive hourly, monthly, and annual results illustrate the utility of the models. The DRYADS model sensitivity to both leaf solute conductivity and root solute conductivity parameters suggest the importance of careful experimental determination of these plant properties. The tissues of solute entry (leaves, roots) initially accumulate solutes in a fixed form in preference to the more remote tissues (stems, fruits). Model application results show that root sapwood is the first major site of trace contaminant accumulation from soil-borne pollutants. The algorithms describing solute movement along a concentration gradient in phloem and as mass flow in the xylem transpiration stream result in high mobility of solutes in vegetation. The simulated diurnal pattern of root solute uptake showed that more than 85% of solutes were taken up during the daylight hours. The simulations further showed that contaminants had the greatest effect on the litter system. Toxic effects of contaminants on decomposition resulted in lower mineralization losses and accumulation of contaminant in litter with continuing deposition.  相似文献   

17.
Sediment deposition is known to affect the structure of marine rocky-bottom communities, but its specific effects on some key organisms, such as sponges, remain poorly investigated. In a 125-day field experiment involving different treatments of exposure to sediment deposition, we investigated survival of asexually produced recruits of the sublittoral demosponge Scopalina lophyropoda, a model organism suitable to understand similar processes in other sponges. A total of 660 explants obtained from 11 non-clonal sponges (explant donors) were distributed on 30 experimental plates. Each donor sponge contributed two clonal explants per plate, one settled under a roof at a silt-protected position and the other at a silt-exposed position. Plates were installed at the rocky walls of the natural community, also at the pillars of a local harbor where the sponge does not occur naturally. A 3-way ANOVA testing for differences in explant longevity as a function of explant donor, exposure to sediment, and habitat detected that longevity was affected by both an undetermined genetic condition of the explant donor and exposure to silt. Silt-protected explants lived longer than silt-exposed explants. A significant “Silt-exposure × Habitat” interaction detected that silt-exposed explants lived shorter within the harbor than in the natural community, suggesting that harbor silt, which was notably finer, is more deleterious. Inspection of daily mortality rates revealed that the detrimental effects of silt were very evident during the first 20 days in treatments and irrespective of habitat. Then, mortality rates progressively decreased, reaching negligible values in all 4 sponge groups by day 65. At this stage, an undetermined mortality factor other than purely sediment deposition reactivated mortality in all 4 sponge groups, but it affected more intensely the sponges in the harbor, irrespective of being protected from or exposed to sediment deposition. All together, the results of our field experiment suggest that sediment loads are a major mortality factor among small sponge individuals in sublittoral rocky communities. Because a significant “donor factor” suggests an unidentified “genetic component” to be involved in the ability to cope with sediment, natural or man-driven processes increasing coastal sediment deposition are susceptible to induce changes not only in the abundance but also the genetic structure of the sponge populations in the long term.  相似文献   

18.
With the re-evaluation and revision of a number of design floods, several embankment overtopping protection systems have been developed and a common technique is the construction of a stepped spillway on the downstream slope. For such moderate slope stepped channels, detailed air–water flow measurements were performed in a large facility with a focus on the rate of energy dissipation, flow resistance, air–water interfacial areas and re-aeration rates. Past and present experimental results showed a significant aeration of the flow. The median dimensionless residual head was about 3 × dc for the 21.8° sloping chute and smaller than that for flatter slopes (θ = 3.4° and 15.9°). The flow resistance results yielded an equivalent Darcy friction factor of about 0.25 implying a larger flow resistance for the 21.8° slope angle than for smaller slope angles. The re-aeration rate was deduced from the integration of the mass transfer equation using measured air–water interfacial areas and air–water flow velocities. The results suggested an increasing re-aeration rate with increasing rate of energy dissipation. The stepped invert contributed to intense turbulence production, free-surface aeration and large interfacial areas. The experimental data showed however some distinctive seesaw pattern in the longitudinal distribution of air–water flow properties with a wave length of about two step cavities. While these may be caused by the interactions between successive adjacent step cavities and their interference with the free-surface, the existence of such “instabilities” implies that the traditional concept of normal flow might not exist in skimming flows above moderate-slope stepped spillways.  相似文献   

19.
Toxiwasp∗     
TOXIWASP combines most of the kinetic structure of EXAMS 2 with the transport capabilities of WASP (Water Analysis Simulation Program). TOXIWASP uses variable chemical degradation rates from chemical properties and the environmental conditions of the aquatic ecosystem. These rates are reduced from pseudo first‐order rates to first‐order rates including the processes hydrolysis, biotransfor‐mation, phototransformation, oxidation, and volatilisation. Assuming ultimate local equilibrium, and using a chemical dependent partition coefficient as well as spatially varying environmental carbon fractions, sorption onto sediments and biomass is calculated. Environmental alternations could be specified in any time scale by providing monitoring data.

TOXIWASP generates total sediment and chemical concentrations every time step in every segment, including surface water, subsurface water, surface bed and subsurface bed. Advection, dispersion, mass loading, sedimentation, and scour affect sediment concentration in the water column and in the bed sediment concentrations depend on burial and erosion. In addition chemical concentrations are influenced by degradation, sediment‐water dispersion, and percolation. Lateral transport of chemical within the bed is neglected and transport data are not calculated in the program. TOXIWASP is developed to model stratified lakes, reservoirs, large rivers, estuaries, and coastal waters. As for EXAMS 2 (Burns et al.2) the TOXIWASP user has to accept the model's inability to connect the water body to a chemically contaminated atmosphere.  相似文献   

20.
With a growing awareness of water pollution problems, in recent years there has been a considerable increased effort in developing and applying numerical models to predict accurately the contaminant distributions, particularly in free surface flows. This numerical study presents a predictive hydrodynamic model in order to explore the dispersion phenomenon of a pollutant injected from time-dependent sources in a turbulent free surface flow. More precisely, we study the impact of pulsation on the dispersion of an injected material. The air/water interface was modeled with the volume of fluid method and sharpness of the free surface was assured by means of Geo-Reconstruct scheme. The numerical results showed that the pulsation played a dominant role at the early stage of the pollutant transport. It was also observed that the pulsation affected the distribution of the injected material especially near the front and that a major swirling action was developed compared to the constant-rate-injection case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号