首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同结构形状的街道峡谷内污染物扩散   总被引:5,自引:0,他引:5  
针对不同的城市街道峡谷结构形状,通过求解二维不可压缩N-S方程和K-ε湍流模型方程及污染物对流扩散方程,数值模拟了街道峡谷内的流场及机动车排放污染物浓度场,从而说明了街道峡谷的结构是影响街道峡谷内污染气体扩散的主要因素之一。  相似文献   

2.
G.Q. Chen  L. Zeng  Z. Wu 《Ecological modelling》2010,221(24):2927-2937
As a continuation of the modelling on ecological degradation and hydraulic dispersion of pollutant emission into an idealized two-dimensional free-surface wetland flow (Zeng, L., Chen, G.Q., 2009b. Ecological degradation and hydraulic dispersion of contaminant in wetland. Ecol. Model., doi:10.1016/j.ecolmodel.2009.10.024), an ecological risk assessment model for the typical case of a pulsed contaminant emission into a realistic three-dimensional wetland channel flow is presented in this paper for the fate of cross-sectional mean concentration under environmental dispersion. An environmental dispersion model for the mean concentration is devised as an extension of Taylor’s classical analysis on dispersion in fluid flows. The velocity distribution and the environmental dispersivity in the fully developed steady flow through the wetland is found and illustrated with limiting cases covering various known solutions for the porous media flow between parallel plates, flow in a shallow wetland, sweeping flow in a densely vegetated wetland, and single phase flow in a channel. Obtained by Aris’s method of moments, the environmental dispersivity is shown characterized with multi-scale asymptotic time variations with stem dominated stage, transitional stage, and width-depth-stem dominated stage. Based on the solution for the evolution of contaminant cloud in the wetland channel flow, critical length and duration of the contaminant cloud with concentration beyond given environmental standard level are concretely illustrated for typical pollutant constituents in wastewater emission. Under the same emission intensity and environmental standard, the duration of contaminant cloud in the wetland channel is revealed shorter than that in a free surface wetland, due to the lateral effect.  相似文献   

3.
The ecological security of urban surface water is subject to significant risk due to rapid urbanization. Pollutant discharge and accumulation are among the most critical stressors endangering urban surface water and affecting the normal operation of urban aquatic ecosystem services. In this study, we assessed how pollutant accumulation stresses water purification systems, which perform important urban ecosystem services. First, we applied a water environmental capacity model to calculate thresholds of urban surface water environmental capacity under a given water quality target. Second, based on a stepwise regression method, an equation was used to describe the relationship between stressor factors (pollutant accumulation) and measurable socioeconomic indicators. Third, an ecological risk index was used as an assessment endpoint indicator to assess the negative ecological effect of pollutant accumulation. Finally, risk level was classified according to the risk quotient method. Taking Xiamen City as an example, we analyzed the contribution of different sources of pollutants and evaluated the urban ecological risk posed by two major contaminants present in the environment by measuring chemical oxygen demand (COD) and ammonium nitrogen (NH4+-N). The results show that the ecological risk indexes of both COD and NH4+-N are expected to decrease from 2020 to 2030; that of COD is expected to fall from medium to low, whereas that of NH4+-N is expected to fall from high to medium. These findings demonstrate that the ecological risk posed to the surface water in Xiamen City can be reduced by controlling population growth, optimizing industrial structure, and promoting economic development.  相似文献   

4.
This study focuses on the influence of emission conditions—velocity and temperature—on the dynamics of a buoyant gas release in the atmosphere. The investigations are performed by means of wind tunnel experiments and numerical simulations. The aim is to evaluate the reliability of a Lagrangian code to simulate the dispersion of a plume produced by pollutant emissions influenced by thermal and inertial phenomena. This numerical code implements the coupling between a Lagrangian stochastic model and an integral plume rise model being able to estimate the centroid trajectory. We verified the accuracy of the plume rise model and we investigated the ability of two Lagrangian models to evaluate the plume spread by means of comparisons between experiments and numerical solutions. A quantitative study of the performances of the models through some suitable statistical indices is presented and critically discussed. This analysis shows that an additional spread has to be introduced in the Lagrangian trajectory equation in order to account the dynamical and thermal effects induced by the source conditions.  相似文献   

5.
The collapse of the world trade center (WTC) produced enhanced levels of airborne contaminants in New York City and nearby areas on September 11, 2001 through December, 2001. This catastrophic event revealed the vulnerability of the urban environment, and the inability of many existing air monitoring systems to operate efficiently in a crisis. The contaminants released circulated within the street canyons, but were also lifted above the urban canopy and transported over large distances, reflecting the fact that pollutant transport affects multiple scales, from single buildings through city blocks to mesoscales. In this study, ground-and space-based observations were combined with numerical weather forecast fields to initialize fine-scale numerical simulations. The effort is aimed at reconstructing pollutant dispersion from the WTC in New York City to surrounding areas, to provide means for eventually evaluating its effect on population and environment. Atmospheric dynamics were calculated with the multi-grid Regional Atmospheric Modeling System (RAMS), covering scales from 250 m to 300 km and contaminant transport was studied using the Hybrid Particle and Concentration Transport (HYPACT) model that accepts RAMS meteorological output. The RAMS/HYPACT results were tested against PM2.5 observations from the roofs of public schools in New York City (NYC), Landsat images, and Multi-angle Imaging SpectroRadiometer (MISR) retrievals. Calculations accurately reproduced locations and timing of PM2.5 peak aerosol concentrations, as well as plume directionality. By comparing calculated and observed concentrations, the effective magnitude of the aerosol source was estimated. The simulated pollutant distributions are being used to characterize levels of human exposure and associated environmental health impacts.  相似文献   

6.
Ecological degradation and hydraulic dispersion of contaminant in wetland   总被引:1,自引:0,他引:1  
For the typical case of a pulsed contaminant emission into a free surface wetland flow, a theoretical analysis is presented in this paper for the decay of the depth-averaged concentration under the combined action of ecological degradation and hydraulic dispersion. Based on a first-order reaction model extensively employed in related ecological risk assessment and environmental hydraulic design, the effect of ecological degradation is separated from the hydraulic effect via an exponential transformation for the general formulation for contaminant transport. The speed profile of a fully developed steady flow through the wetland is obtained. A hydraulic dispersion model for the depth-averaged concentration is devised as an extension of Taylor’s classical analysis on dispersion, and corresponding hydraulic dispersivity is obtained by Aris’s method of moments. Analytical solution of depth-averaged concentration is rigorously derived and characterized. For typical pollutant constituents in wastewater emission, the evolution of contaminant cloud in the wetland flow is illustrated by critical length and duration of influenced region with contaminant concentration beyond given environmental standard level, with essential implications for ecological risk assessment and environmental management.  相似文献   

7.
Lagrangian models of dispersion in marine environment   总被引:1,自引:0,他引:1  
Turbulent dispersion can be studied successfully by using Lagrangian particle models. In general, the prediction of correct concentration fields is a complex issue when the turbulent field is inhomogeneous and non-stationary. Two classes of Lagrangian dispersion models have been considered in this work, which are based on the Wiener process and the so called “well-mixed” criterion. In order to test the performances of these models and shed light on the underlying physical processes and modeling assumptions, four different numerical models have been compared and tested by means of their long time behavior by considering several study cases concerning idealized marine environment. Furthermore, the coupling of the community model Princeton Ocean Model (POM) with the Lagrangian model LASEMOD (LAgrangian SEa MODel) is used to investigate the temporal and spatial evolution of a passive pollutant released in the vicinity of the coast in the Tyrrhenian Sea basin. The simulation shows with reasonable accuracy the time evolution of both the hydrodynamic and the concentration fields and provides a useful insight into the evaluation of the environmental impact of pollutant releases along the coast.  相似文献   

8.
Several reaction schemes, based on the conserved scalar theory, are implemented within a stochastic Lagrangian micromixing model to simulate the dispersion of reactive scalars in turbulent flows. In particular, the formulation of the reaction-dominated limit (RDL) reaction scheme is here extended to improve the model performance under non-homogeneous conditions (NHRDL scheme). The validation of the stochastic model is obtained by comparison with the available measurements of reactive pollutant concentrations in a grid-generated turbulent flow. This test case describes the dispersion of two atmospheric reactant species (NO and O3) and their reaction product (NO2) in an unbounded turbulent flow. Model inter-comparisons are also assessed, by considering the results of state-of-the-art models for pollutant dispersion. The present validation shows that RDL reaction scheme provides a systematic overestimation (relative error of ca. 85% around the centreline) in computing the local reactant consumption/production rate, whereas the NHRDL scheme drastically reduces this gap (relative error lower than 5% around the centreline). In terms of NO2 production (or reactant consumption), neglecting concentration fluctuations determines overestimations of the product mean of around 100% and a NO2 local production of one order of magnitude higher than the reference simulation. In terms of standard deviations, the concentration fluctuations of both the passive and reactive scalars are generally of the same order of magnitude or up to 1 or 2 orders of magnitudes higher than the corresponding ensemble mean values, except for the background reactant close to the plume edges. The study highlights the importance of modelling pollutant reactions depending on the instantaneous instead of the mean concentrations of the reactants, thus quantifying the role of the turbulent fluctuations of concentration, in terms of scalar statistics (mean, standard deviation, intensity of fluctuations, skewness and kurtosis of concentration, segregation coefficient, simulated reaction rate). This stochastic particle method represents an efficient numerical technique to solve the convection–diffusion equation for reactive scalars and involves several application fields: micro-scale air quality (urban and street-canyon scales), accidental releases, impact of odours, water quality and fluid flow industrial processes (e.g. combustion).  相似文献   

9.
The nutrient and pesticide abatement efficiency of varying mixtures was examined in a vegetated free water surface constructed wetland. Three different agricultural chemical pollutant mixture conditions were assessed: nutrients only (N and P); pesticides only (atrazine, S-metolachlor and permethrin); and a mixture of nutrients and pesticides. With nutrients only, 672 h nutrient mitigation of 77–91% total phosphorous (TP) and 74–98% total nitrogen (TN) was associated with distance from the injection point and rainfall, whereas with nutrient and pesticide mixtures, 672 h nutrient mitigation of 11–71% TP and 84–98% TN were associated with distance and time. With pesticides only, 672 h pesticide mitigation of 50–99% was associated with distance and time, whereas with nutrients and pesticide mixtures, 672 h pesticide mitigation of 48–99% was associated primarily with distance. Dissipation half-lives were 2–10 times greater for P and 1.5–5 times greater for N when pesticides were present. Pesticide dissipation half-lives showed no clear differences with or without nutrients. While vegetated free water surface constructed wetlands can be effective best management practice tools to trap and abate agricultural run-off during rainfall events, efficiencies can be affected by different types of complex pollutant mixtures and wetland design and implementation should accommodate varying efficiencies.  相似文献   

10.
Wind-driven rain (WDR) is responsible for many potential negative effects on bridges, such as structural cracking, aggregate erosion, steel corrosion and storm water management problems and so on. Hence, accurate evaluations of the WDR effects on bridges are essential to provide solutions for preventing material degradation and improving durability capability of bridges. However, in most previous WDR numerical studies, the turbulent dispersion of raindrops was neglected. In this paper, the turbulent dispersion is integrated into Eulerian multiphase model to investigate the WDR effects on a bridge with rectangular cross-section. Especially, the influences of the turbulent dispersion are discussed in detail by comparing the WDR simulation results for the cases with and without consideration of the turbulent dispersion in terms of WDR flow fields, volume fraction, specific catch ratio, catch ratio, rain loads and aerostatic force coefficients. The results indicate that the turbulent dispersion for a certain range of raindrop size is needed to be taken into account for obtaining accurate WDR simulation results for bridges.  相似文献   

11.
Low wind speed conditions are often associated with poor air quality in urban areas, especially near roadways. Predictions of pollutant concentration under such conditions, i.e. low wind-speeds and near road locations, are, however, complicated by the role of traffic produced turbulence (TPT) on pollutant mixing and dilution. Existing dispersion models consider the effect of TPT on pollutant concentrations near roadways, accounting for parameters such as vehicle intensity, vehicle speeds, etc, but do not explicitly account for the contribution of two-way traffic interaction on the pollutant dispersion parameter. The turbulent kinetic energy (TKE) resulting from a two-way traffic condition will be higher than that with a one-way traffic pattern. Here, we obtain a simple formulation for TKE under a two-way traffic pattern from the balance of production and dissipation of turbulence. Considering the vorticity generated by the two-way traffic and determining the equivalent drag coefficient, an expression for TKE due to the two-way traffic interaction was obtained for three different traffic density regimes: light, intermediate, and heavy. The model predictions are validated by comparison with published data from a field study. An improved parameterization of the TPT considering the two-way traffic interaction effect is seen to significantly improve predictions of near roadway pollutant concentrations.  相似文献   

12.
采用现场观测和数值模拟的方法研究了城市街道内机动车排放污染物中的NO扩散特征。结果表明:城市街道中机动车排放污染物的对流扩散取决于屋顶风向和风速,随着建筑物顶部气流速度的增大,街道内同样位置的污染物浓度相对减小;当风向垂直于街道轴线时,街道内同样位置的污染物浓度最大;同时街道内机动车排放的污染物浓度与车流量成正比关系,即机动车流量越大污染物浓度越高。  相似文献   

13.
This paper reports a numerical study on dam-break waves over movable beds. A one-dimensional (1-D) model is built upon the Saint-Venant equations for shallow water waves, the Exner equation of sediment mass conservation and a spatial lag equation for non-equilibrium sediment transport. The set of governing equations is solved using an explicit finite difference scheme. The model is tested in various idealized experimental cases, with fairly good agreement between the numerical predictions and measurements. Discrepancies are observed at the earlier stage of the dam-break wave and around the dam location due to no vertical velocity component being taken into account. Sensitivity tests confirm that the friction coefficient is an important parameter for the evaluation of sediment transport processes operating during a dam-break wave. The influence of the non-equilibrium adaptation length (or the lag distance) is negligible on the wavefront celerity and weak on the free surface and bed profiles, which indicates that one may ignore the spatial lag effect in dam-break wave studies. Finally, the simulation of the Lake Ha!Ha! dyke-break flood event shows that the model can provide relevant results if a convenient formula for computing the sediment transport capacity and an appropriate median grain diameter of riverbed material are selected.  相似文献   

14.
In the scope to create efficient nature like fish ramps using large-scale roughness elements, the present study is an audit of modelling such complex 3D free surface flows using an industrial 2D code solving shallow water equations. Validation procedure is based upon the comparison between numerous experimental measurements and numerical runs around large-scale roughness patterns disposed on the flume bottom in order to determine what 2D reliable numerical results can be expected. In this paper, we focused on cases of unsubmerged obstacles. The results demonstrate that 2D shallow water modelling using an industrial code such as TELEMAC-2D can be a convenient way for the hydraulic engineer to help design a nature-like fishway. This article emphasizes the limitations due to 2D depth integration of velocities and turbulence modelling and gives the domain of validity of the method.  相似文献   

15.
The number and distribution of pollutant concentration in a trapezoidal open channel flow with a side discharge is calculated and effects of the bank gradient are investigated in this paper. A sigma-coordinate water quality numerical model is used to simulate the process of both water and pollutant transportation in the trapezoidal channel open flow. The diffusion coefficient used in the prediction is determined by two methods including constant coefficient and the depth-averaged k-epsilon turbulence closure model. The change of the concentration with the bank gradient is acquired based on the simulation of cases with different bank gradients. An analytical formula is derived by using the mirror image method and related diffusion theories, ignoring the discharge momentum and the influence of the opposite bank. The formula can predict the number and distribution of pollutant concentration with some acceptable errors. The results demonstrate that the bank gradient has great influence on the concentration distribution which will decrease with the increase of the bank gradient approximately following a hyperbolic law.  相似文献   

16.
Internal gravity waves that are generated in the open ocean have a universal frequency spectrum, called Garrett–Munk spectrum. By initializing internal waves that satisfy the Garrett–Munk spectrum in a non-hydrostatic numerical model, we investigate the material dispersion produced by these internal waves. Three numerical experiments are designed: Exp.-1 uses a linearly stratified fluid, Exp.-2 has an upper mixed layer, and Exp.-3 incorporates a circular front into the upper mixed layer. Resorting to neutrally buoyant particles, we investigate the dispersion in terms of metrics of the relative dispersion and finite-scale Lyapunov exponent (FSLE). Exp.-1 shows that the dispersion regime produced by these internal waves is between ballistic and diffusive based on relative dispersion, and is however ballistic according to FSLE. The maximum FSLE at scales of 100 m is about 5 day\(^{-1}\), which is comparable to that calculated using ocean drifters. Exp.-2 demonstrates that internal waves can generate flows and material dispersion in an upper mixed layer. However, when mixed layer eddies are present, as in Exp.-3, the dispersion in the mixed layer is controlled by the eddies. In addition, we show that inertial oscillations do not affect the relative dispersion, but impact FSLE at scales of inertial oscillations.  相似文献   

17.
2,4,6-三氯酚在模型水生生态系统中的归宿   总被引:2,自引:0,他引:2  
戴树桂  王菊先  王义 《环境化学》1994,13(6):510-518
测定了模型水生生态系统水、底泥中2.4,6-三氯酚(TCP)浓度随时间的变化值,以及TCP从水中挥发、光解、底泥吸附、解吸、微生物降解的速率常数.假设水中TCP的迁移和转化遵循—级速率过程,水中物质平衡能通过数学等式来描述,显示出室系统教学模型能粗略预测模型水生生态系统中TCP浓度随时间的变化.最后,应用该模型预测了排放到天津室外兼性塘中TCP的迁移、归宿,发现15d后出口水中TCP浓度已降低到入口水中浓度的10%  相似文献   

18.
This paper presents a study of the waves generated by a solid block landslide moving along a horizontal boundary. The landslide was controlled using a mechanical system in a series of physical experiments, and laser-induced fluorescence measurements resolved both spatial and temporal variations in the free surface elevation. During its constant-velocity motion, the landslide transferred energy into ‘trapped’ offshore-propagating waves within a narrow frequency band. The wave trapping is demonstrated by investigating the wave dispersion characteristics using a two-dimensional Fourier Transform. The first of the trailing waves broke at Froude numbers greater than or equal to 0.625. The parametric dependence of the largest-amplitude waves and the potential energy within the wave field are discussed. The experimental results were compared to the predictions of an incompressible Navier–Stokes solver with and without turbulence models. The numerical model under-predicted the measured wave amplitudes, although it accurately predicted the measured wave phasing. The turbulent model more accurately predicted the shapes of the trailing waves. Both experimental and numerical results confirmed that investigations into wave generation by submerged objects moving at constant velocity should also consider the initial acceleration of the object, as this affects the overall evolution of the wave field. The applicability of the horizontal-boundary results to more realistic field scenarios is discussed.  相似文献   

19.
During floods, the density of river water usually increases due to a subsequent increase in the concentration of the suspended sediment that the river carries, causing the river to plunge underneath the free surface of a receiving water basin and form a turbidity current that continues to flow along the bottom. The study and understanding of such complex phenomena is of great importance, as they constitute one of the major mechanisms for suspended sediment transport from rivers into oceans, lakes or reservoirs. Unlike most of the previous numerical investigations on turbidity currents, in this paper, a 3D numerical model that simulates the dynamics and flow structure of turbidity currents, through a multiphase flow approach is proposed, using the commercial CFD code FLUENT. A series of numerical simulations that reproduce particular published laboratory flows are presented. The detailed qualitative and quantitative comparison of numerical with laboratory results indicates that apart from the global flow structure, the proposed numerical approach efficiently predicts various important aspects of turbidity current flows, such as the effect of suspended sediment mixture composition in the temporal and spatial evolution of the simulated currents, the interaction of turbidity currents with loose sediment bottom layers and the formation of internal hydraulic jumps. Furthermore, various extreme cases among the numerical runs considered are further analyzed, in order to identify the importance of various controlling flow parameters.  相似文献   

20.
This paper describes a σ-coordinate scalar transport model coupled with a Boussinesq-type hydrodynamic model. The Boussinesq model has the ability to calculate both three-dimensional velocity distributions and the water surface motion. To capture ‘dispersion’ processes in open channel flow, horizontal vorticity effects induced by a bottom shear stress are included in the Boussinesq model. Thus, a reasonable representation of vertical flow structure can be captured in shallow and wavy flow fields. To solve the coupled Boussinesq and scalar transport system, a finite-volume method, based on a Godunov-type scheme with the HLL Riemann solver, is employed. Basic advection and advection–diffusion numerical tests in a non-rectangular domain were carried out and the computed results show good agreement with analytic solutions. With quantitative comparisons of dispersion experiments in an open channel, it is verified that the proposed coupled model is appropriate for both near and far field scalar transport predictions. From numerical simulations in the surf zone, physically reasonable results showing expected vertical variation are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号