首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
长三角地区作为我国大气污染较为严重区域之一,如何在保持经济增长的同时减少CO2与大气污染物的排放已成为一个重要挑战。本研究基于2007年与2012年长三角区域间投入产出表,定量分析了长三角地区省市间贸易引致的二氧化碳和大气污染物排放转移特征和变化趋势。同时,运用产业关联系数法,从前向关联与后向关联双重视角分析了长三角地区减缓CO2和大气污染物排放的关键行业。研究结果表明,长三角的SO2、PM2.5排放总量表现为消费端大于生产端,CO2、NOx排放总量表现为生产端大于消费端。安徽省总体呈现为长三角地区贸易的SO2、NOx与PM2.5排放净调出地,而上海与浙江表现为多数污染物排放净调入地。CO2与大气污染物协同前向减排的关键行业为江苏省、浙江省和安徽省的电力、热力的生产和供应业,安徽省的煤炭开采和洗选业等,可以通过生产端技术革新和能源结构优化来促进减排;CO2与大气污染物后向协同减排的关键行业为江苏省、浙江省和安徽省的建筑业等,对于这些行业,调整消费结构是有效的减排措施。为更好地制定长三角地区减排与污染防治政策,应当综合考虑行业减排、协同减排等,以确保经济持续增长的同时达到减排目标。  相似文献   

2.
食物生产不仅依赖水资源,同时产生大量二氧化碳排放,这种资源环境影响存在于食物系统整个产业链。为促进食物系统节水降碳,本文构建了包含5大类共23种具体食物部门的混合生命周期评价模型,对各类食物系统的完全水资源消耗和二氧化碳排放进行了核算与比较。结果表明:①不同食物的水资源消耗和二氧化碳排放差异明显,动物性食物的平均水资源消耗和二氧化碳排放强度分别为植物性食物的1.9 ~ 15.0倍和1.9 ~ 2.7倍;②食物系统直接和间接水资源消耗占比较为接近,但二氧化碳排放主要源自上游产业链的间接排放,占比高达80.9%;③食物系统间接水资源消耗主要来自农业部门,而间接碳排放主要来自电力生产和供应业、基础化工原料制造业、非金属矿产品行业和交通运输业;④从营养元素供给看,动物性食物提供蛋白质和脂肪的资源环境影响高于植物性食物,蔬菜和主食分别在提供维生素C和碳水化合物上具有最小的环境成本。基于本文结果,食物系统节水应主要提高生产环节用水效率,而降碳则主要依靠上游产业减排,特别是发电和化肥生产等行业的协同节水减碳潜力。同时,本文结果也可为未来基于环境影响制定膳食指南提供数据支撑。  相似文献   

3.
In line with the global target of reducing climate change and its impact, this study explored the causal relationship between CO2 emissions, modernized agriculture, trade openness, aggregate and disaggregate energy consumption in 14 African countries from 1990–2013 using a panel quantile estimation procedure. The empirical results showed that value addition to agricultural commodities declines CO2 emissions in countries with high pollution levels. The study revealed a positive nexus between CO2 emissions and energy consumption homogeneously distributed across quantiles. Trade openness was found to lower CO2 emissions in countries with lower and higher levels of environmental pollution. While fossil fuel energy consumption was found to exacerbate CO2 emissions, renewable energy consumption confirmed its mitigating effect on environmental pollution. The institution of climate‐smart agricultural options will sustainably increase productivity and income while adapting to climate change by reducing greenhouse gas emissions. Diversification of energy technologies with clean and modern energy sources like renewables avoid the over‐dependence on fossil fuels for agricultural purposes. Trade policies can stimulate flows of technology and investment opportunities for specialization in production and economies of scale. Hence, the consideration of policies that boost agricultural sector productivity and create an efficient market for international trade in Africa will help in improving livelihoods.  相似文献   

4.
基于LMDI模型的乌鲁木齐工业废气排放影响因素研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文运用对数平均的LMDI 分解模型,选取工业SO2、工业烟(粉)尘排放量作为污染物指标,将2006—2013 年,乌鲁木齐工业废气排放量影响因素分解为规模效应、结构效应、技术效应,考虑到技术效应机制的复杂性,进一步将技术效应细化为污染治理效应和清洁技术效应。研究结果表明:规模效应和结构效应增加乌鲁木齐工业废气排放,其中规模效应对工业废气排放量贡献率由2007 年的119.10%增加到2013 年的263.03%,结构效应对工业废气排放量的增加也起到一定的促进作用,但影响效果远低于规模效应,年贡献率均低于10%,技术效应阻碍工业废气排放的增加,贡献率由2007 年的-19.86%增加到2013 年的-172.50%。制造业和电力、燃气及水的生产和供应业废气排放量占工业废气排放总量的70% 左右,是乌鲁木齐工业废气污染的主要行业。清洁技术效应对SO2 的减排起促进作用,是阻碍工业SO2 排放量增加的主要因素。污染治理效应是工业烟(粉)尘的减排主要因素,说明目前乌鲁木齐工业烟(粉)尘的减排依赖于排放后的治理。  相似文献   

5.
CO2-free paper?     
Black liquor gasification–combined cycle (BLGCC) is a new technology that has the potential to increase electricity production of a chemical pulping mill. Increased electricity generation in combination with the potential to use biomass (e.g. bark, hog fuel) more efficiently can result in increased power output compared to the conventional Tomlinson-boiler. Because the BLGCC enables an integrated pulp and paper mill to produce excess power, it can offset electricity produced by power plants. This may lead to reduction of the net-CO2 emissions. The impact of BLGCC to offset CO2 emissions from the pulp and paper industry is studied. We focus on two different plant designs and compare the situation in Sweden and the US. The CO2 emissions are studied as function of the share of recycled fibre used to make the paper. The study shows that under specific conditions the production of “CO2-free paper” is possible. First, energy efficiency in pulp and paper mills needs to be improved to allow the export of sufficient power to offset emissions from fossil fuels used in boilers and other equipment. Secondly, the net-CO2 emission per ton of paper depends strongly on the emission reduction credits for electricity export, and hence on the country or grid to which the paper mill is connected. Thirdly, supplemental use of biomass to replace fossil fuel inputs is important to reduce the overall emissions of the pulp and paper industry.  相似文献   

6.
We compare calculated greenhouse gas emissions for a North American beef feedlot operation, which includes biogas production by anaerobic digestion with subsequent electricity generation (the AD case), to the emissions for a “business as usual” case, which includes both a feedlot and an equivalent amount of grid-generated electricity. Anaerobic digestion, biogas production and electricity production are the major sources of differences in emissions. Fertilizer production, crop production, manure collection and spreading, as well as the associated transport stages are also considered within the LCA system boundaries; impacts on life cycle emissions from these sources are lower. Running a feedlot and producing electricity using typical grid power plants produces 3,845 kg CO2?eq/MWh while running a feedlot, which generates biogas to produce electricity, produces 2,965 kg CO2?eq/MWh. This savings of 880 kg CO2?eq/MWh arises because the net power generation in the AD case emits about 90% less life cycle GHG emissions compared to grid-average electricity. The high overall emission levels arise due to emissions associated with enteric fermentation in beef cattle as the main source of GHG emissions in both the “business as usual” and the AD cases. It contributed 57% of total emissions for the feedlot /biogas /electricity system and 44% of total emissions for the feedlot /grid electricity system.  相似文献   

7.

Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987–1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  相似文献   

8.
Electricity and hydrogen can be used as energy carriers to reduce emissions of CO2 from small and mobile energy users. One of the most promising technologies for the production of electricity and hydrogen with low CO2 emissions is coal gasification with CO2 capture and storage. Performance and cost data are presented for plants which produce electricity and hydrogen alone and plants which co-produce both of these energy carriers. The co-production plants include plants which produce a fixed ratio of hydrogen to electricity and plants which are able to vary the ratio while continuing to operate the gasification and CO2 capture parts of the plant at full load. The paper also assesses the ability of these types of plants to satisfy the varying demands for hydrogen and electricity in future energy supply systems. The lowest cost option for the scenarios assessed in the paper is the use of flexible co-production plants with underground buffer storage of hydrogen.  相似文献   

9.
Sustainable use of natural resources would entail ensuring that derived economic benefits today do not undermine the welfare of generations to come. On this basis, this study examines the nexus between natural resource rents and carbon dioxide (CO2) emissions disaggregated into production and consumption-based (i.e., trade-adjusted) CO2 emissions for a selected panel of 45 developing and transition economies over the period 1995–2017. The empirical model also incorporates the impacts of population, affluence, and energy intensity. The results show that affluence increases production-based CO2 emissions by 1.407%, with the EKC's predicted inverted U-shaped curve only explaining consumption-based CO2 emissions. Economic reliance on natural resource rents and energy intensification contribute 0.022% and 0.766%, respectively, to CO2 emissions embedded in territorial production inventories and 0.035% and 0.583%, respectively, to CO2 emissions embedded in consumption inventories. The bootstrap non-causality test shows that historical data on each variable has significant predictive power for future CO2 emissions from both sources. The historical information about natural resource rents has significant predictive power over the future levels of affluence and energy intensity. Clearly, the results show that the environmental impact of natural resource rents is stronger when CO2 emissions are adjusted for trade and varies among the countries, with Bangladesh, Guinea, India, Malaysia, Mexico, Nigeria, Pakistan, Saudi Arabia, Vietnam, and Zimbabwe among the most affected countries. Overall, this study provides motivation for policies to keep the use of natural resources within sustainable limits.  相似文献   

10.
The use of recycled concrete aggregates (RCA) in applications other than road sub-layers is limited by two factors: the high porosity of RCA in comparison with natural aggregates, and the restrictions set forth in standards and building codes. Research efforts aimed at alleviating these restrictions are focused on improving the quality of coarse RCAs by reducing the amount of adhered cement pastes, which is the weakest element in this system and influences the rheological behaviour.This paper presents an analysis of the environmental impacts of the recent mechanical and thermo-mechanical processing techniques which produce high performance RCA by reducing the volume of adhered cement paste. Based on published data, processing scenarios were established. These scenarios permit making rough estimates of energy consumption, CO2 emissions, fines generation and product quality. Using these data and the available emission factors from several countries, an objective comparison was made between these innovating processes and conventional recycling.The production of fines increases from 40% up to as much as 70% as the volume of adhered cement paste on the RCA is reduced. Fuel fed thermo-mechanical process energy consumption, per tonne of recycled aggregate, varies between 36 and 62 times higher than conventional recycling processes. Mechanical processing, combined with microwave heating, increases energy consumption from 3 to a little more than 4 times conventional recycling. Consequently, CO2 emissions released by conventional coarse aggregate production go from 1.5 to 4.5 kgCO2/t, to around 200 kgCO2/t, for that of fossil fuel fed thermo-mechanical treatments.Mechanical and mechanical/microwave treatments appear to have the greatest environmental potential. Notwithstanding, the further development of markets for fines is crucial for reducing environmental loads.  相似文献   

11.
本文以2006—2015年长江三角洲城市群为研究对象,分析该地区不同部门因能源消费而产生的典型污染物排放量,然后利用LMDI模型,对空气污染进行社会经济驱动因素分析。结果表明:该地区CO_2、SO_2、PM_(2.5)与PM_(10)等空气污染物排放量均呈现先快速增长后缓慢减少的趋势,排放的峰值多出现在了2013年,而NO_x则一直保持增长的趋势。其中,电力与工业部门是空气污染物的主要排放源,但对排放量贡献呈减少趋势,生活部门与交通部门污染物排放量则逐步增长,尤其是对PM_(2.5)与PM_(10)排放量的贡献不可忽视。人口与经济增长对污染物排放量起到了正向拉动作用,经济因素的驱动作用最为明显,其效应值呈现先小幅增加后大幅下降的趋势,能源效率与能源结构有抑制作用,其对污染物排放的效应值仅次于经济因素,而能源结构变化的效应很小。  相似文献   

12.
The purpose of this article is to study the energy and carbon dioxide intensities of Thailand's steel industry and to propose greenhouse gas emission trends from the year 2011 to 2050 under plausible scenarios. The amount of CO2 emission from iron and steel production was calculated using the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines in the boundary of production process (gate to gate). The results showed that energy intensity of semi-finished steel product was 2.84 GJ/t semi-finished steel and CO2 intensity was 0.37 tCO2eq/t semi-finished steel. Energy intensity of steel finishing process was 1.86 GJ/t finished steel and CO2 intensity was 0.16 tCO2eq/t finished steel. Using three plausible scenarios from Thailand's steel industry, S1: without integrated steel plant (baseline scenario), S2: with a traditional integrated BF–BOF route and S3: with an alternative integrated DR-EAF route; the Greenhouse Gas emissions from the year 2011 to 2050 were projected. In 2050, the CO2 emission from S1 (baseline scenario) was 4.84 million tonnes, S2 was 21.96 million tonnes increasing 4.54 times from baseline scenario. The CO2 emission from S3 was 7.12 million tonnes increasing 1.47 times from baseline scenario.  相似文献   

13.
The LCA emissions from four renewable energy routes that convert straw/corn stover into usable energy are examined. The conversion options studied are ethanol by fermentation, syndiesel by oxygen gasification followed by Fischer Tropsch synthesis, and electricity by either direct combustion or biomass integrated gasification and combined cycle (BIGCC). The greenhouse gas (GHG) emissions of these four options are evaluated, drawing on a range of studies, and compared to the conventional technology they would replace in a western North American setting. The net avoided GHG emissions for the four energy conversion processes calculated relative to a “business as usual” case are 830 g CO2e/kWh for direct combustion, 839 g CO2e/kWh for BIGCC, 2,060 g CO2e/L for ethanol production, and 2,440 g CO2e/L for FT synthesis of syndiesel. The largest impact on avoided emissions arises from substitution of biomass for fossil fuel. Relative to this, the impact of emissions from processing of fossil fuel, e.g., refining of oil to produce gasoline or diesel, and processing of biomass to produce electricity or transportation fuels, is minor.  相似文献   

14.
The achievement possibilities of the EU 2 °C climate target have been assessed with the ETSAP TIAM global energy systems model. Cost-effective global and regional mitigation scenarios of carbon dioxide, methane, nitrous oxide and F-gases were calculated with alternative assumptions on emissions trading. In the mitigation scenarios, an 85% reduction in CO2 emissions is needed from the baseline, and very significant changes in the energy system towards emission-free sources take place during this century. The largest new technology groups are carbon-capture and storage (CCS), nuclear power, wind power, advanced bioenergy technologies and energy efficiency measures. CCS technologies contributed a 5.5-Pg CO2 annual emission reduction by 2050 and 12 Pg CO2 reduction by 2100. Also large-scale forestation measures were found cost-efficient. Forestation measures reached their maximum impact of 7.7 Pg CO2 annual emission reduction in 2080. The effects of uncertainties in the climate sensitivity have been analysed with stochastic scenarios.  相似文献   

15.
ABSTRACT

The aim of this paper is to investigate the relationship between environmental policy stringency and CO2 emissions in BRIICTS (Brazil, Russia, India, Indonesia, China, Turkey and South Africa) for the period 1993–2014 after controlling for renewable energy, fossil energy, oil prices and income. We believe that this is the first attempt to use the recently OECD-developed environmental policy stringency index to test the effectiveness of environmental stringency policy in reducing CO2 emission in these countries. Applying the Panel Pooled Mean Group Autoregressive Distributive Lag (PMG-ARDL) estimator, we found an inverted U–shaped relationship between environmental policy stringency and CO2 emissions. This suggests that initially strict stringent environmental policy does not lead to improvements in the environment but after a certain level or a threshold point, environmental stringency policy leads to improvement in environmental quality. Renewable energy consumption was negatively related to CO2 emissions while fossil energy consumption and real oil prices and income were positively and significantly related to CO2. Our findings suggest that strengthening the stringency of environmental policies and promoting renewable energy are effective ways of preventing environmental degradation in BRIICTS countries.  相似文献   

16.

Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed, and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO2 and NOx will increase. The emission of CO and CH4 will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%–45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO2 emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment.

  相似文献   

17.
18.
Agriculture is one of the major sectors in Thailand, with more than half of the population employed in agriculture‐related occupations. This study evaluated energy consumption and greenhouse gas (GHG) emissions of the Thai agricultural sector by applying the economic input–output life cycle assessment (EIO‐LCA) approach. The model evaluates the entire agricultural sector supply chain. Based on one million Thai baht (approximately $27,800 U.S. dollars) final demand of the rice paddy sector, the carbon dioxide (CO2) emissions from the electricity sector are responsible for 27% (1,246 kilograms [kg] CO2) of the total CO2 emissions, whereas the emissions from paddy activities associated with the fertilizers and pesticides sector account for 16% (760 kg CO2) and 11% (513 kg CO2), respectively. The top three largest GHG emissions from the total agricultural sector supply chain are associated with the oil palm, the coffee and tea, and the fruit sectors. The government should promote and encourage sustainable agriculture by reducing the use of fertilizers and pesticides and by utilizing energy‐saving technologies.  相似文献   

19.
Sustainable development and eco-efficiency are urgent and imperative demands for the well-being of our planet, continued growth of a society, and human development. Traditional Portland cement production seems unsustainable due to consumption of huge natural resources and energy and significant CO2 emissions. The volume of industrial wastes is increasing significantly, leading to a number of economical and ecological problems. Although industrial wastes can be incorporated in cementitious materials by various traditional methods, the substitution ratio of industrial wastes in cementitious materials is relatively low to avoid unacceptable performance loss. Novel methods, such as improving hydraulic activities of metallurgical slags by adding composition adjusting material at high temperature, improving surface cementitious properties of fly ashes by dehydration and rehydration treatment, and arranging cement clinker and industrial wastes in the particle size distribution of blended cements according to their hydraulic activities, are reviewed. These methods provide more effective approach to prepare high performance blended cements with larger amount of industrial wastes, leading to a very significant role in CO2 emissions reducing, resources and energy conservation of the cement industry.  相似文献   

20.
Global warming is a result of increasing anthropogenic CO2 emissions, and the consequences will be dramatic climate changes if no action is taken. One of the main global challenges in the years to come is therefore to reduce the CO2 emissions.Increasing energy efficiency and a transition to renewable energy as the major energy source can reduce CO2 emissions, but such measures can only lead to significant emission reductions in the long-term. Carbon capture and storage (CCS) is a promising technological option for reducing CO2 emissions on a shorter time scale.A model to calculate the CO2 capture potential has been developed, and it is estimated that 25 billion tonnes CO2 can be captured and stored within the EU by 2050. Globally, 236 billion tonnes CO2 can be captured and stored by 2050. The calculations indicate that wide implementation of CCS can reduce CO2 emissions by 54% in the EU and 33% globally in 2050 compared to emission levels today.Such a reduction in emissions is not sufficient to stabilize the climate. Therefore, the strategy to achieve the necessary CO2 emissions reductions must be a combination of (1) increasing energy efficiency, (2) switching from fossil fuel to renewable energy sources, and (3) wide implementation of CCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号