首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
As a silicon hyperaccumulator, lowland rice takes up higher levels of As than many other plants due to silicic acid and arsenite sharing the same transporters (Lsi1 and Lsi2). Glomus intraradices (AH01) was inoculated to rice under different arsenite concentrations (0, 2 and 8 μM) in order to investigate the interactions between arbuscular mycorrhizal fungus and rice on the accumulation of arsenite. The relative mRNA expressions of Lsi1 and Lsi2 resulted in a down-regulating trend in mycorrhizal plants. Under 2 μM arsenite treatments, Lsi1 and Lsi2 were significantly decreased, by 0.7-fold (P < 0.05) and 0.5-fold (P < 0.01), respectively, in mycorrhizal plants when compared with non-mycorrhizal plants. This led to the decrease of arsenite uptake per unit of root dry mass. No organic As species were detected in both roots and shoots. The As(III)/As(V) ratios indicated that mycorrhizal plants immobilized most of the arsenite proportion in the roots and prevented its translocation from the roots to the shoots.  相似文献   

2.
Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 μM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 μM arsenite treatment for 6 days.  相似文献   

3.
Root and shoot lead concentrations and the impact of chelating agents on these were investigated in two populations of the novel metallophyte Matthiola flavida. Plants were exposed in hydroponics to Pb(NO3)2, supplied alone, or in combination with citric acid, or EDDS. When supplied at concentrations expected to bind about 95% of the Pb in a solution containing 1-μM Pb (1000 μM citrate or 3.1 μM EDDS, respectively), the root and shoot Pb concentrations were dramatically lowered, in comparison with a 1-μM free ionic Pb control exposure. A 1-mM EDDS + 1-μM Pb treatment decreased the plants’ Pb concentrations further, even to undetectable levels in one population. At 100 μM Pb in a 1-mM EDDS-amended solution the Pb concentration increased strongly in shoots, but barely in roots, in comparison with the 1-μM Pb + 1-mM EDDS treatment, without causing toxicity symptoms. Further increments of the Pb concentration in the 1-mM EDDS-amended solution, i.e. to 800 and 990 μM, caused Pb hyperaccumulation, both in roots and in shoots, associated with a complete arrest of root growth and foliar necrosis. M. flavida seemed to be devoid of constitutive mechanisms for uptake of Pb-citrate or Pb-EDDS complexes. Hyperaccumulation of Pb-EDDS occurred only at high exposure levels. Pb-EDDS was toxic, but is much less so than free Pb. Free EDDS did not seem to be toxic at the concentrations tested.  相似文献   

4.
Ahammed GJ  Yuan HL  Ogweno JO  Zhou YH  Xia XJ  Mao WH  Shi K  Yu JQ 《Chemosphere》2012,86(5):546-555
The present study was carried out to investigate the effects of exogenously applied 24-epibrassinolide (BR) on growth, gas exchange, chlorophyll fluorescence characteristics, lipid peroxidation and antioxidant systems of tomato seedlings grown under different levels (0, 10, 30, 100 and 300 μM) of phenanthrene (PHE) and pyrene (PYR) in hydroponics. A concentration-dependent decrease in growth, photosynthetic pigment contents, net photosynthetic rate (Pn), stomatal conductance (Gs), maximal quantum yield of PSII (Fv/Fm), effective quantum yield of PSII (ΦPSII), photochemical quenching coefficient (qP) has been observed following PHE and PYR exposure. By contrast, non-photochemical quenching coefficient (NPQ) was increased. PHE was found to induce higher stress than PYR. However, foliar or root application of BR (50 nM and 5 nM, respectively) alleviated all those depressions with a sharp improvement in the activity of photosynthetic machinery. The activities of guaicol peroxidase (GPOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as content of malondialdehyde (MDA) were increased in a dose-dependent manner under PHE or PYR treatments. Compared with control the highest increments of GPOD, CAT, APX, GR and MDA by PHE/PYR alone treatments were observed following 300 μM concentration, which were 67%, 87%, 53%, 95% and 74% by PHE and 42%, 53%, 30%, 86% and 62% by PYR, respectively. In addition, both reduced glutathione (GSH) and oxidized glutathione (GSSG) were induced by PHE or PYR. Interestingly, BR application in either form further increased enzymatic and non enzymatic antioxidants in tomato roots treated with PHE or PYR. Our results suggest that BR has an anti-stress effect on tomato seedlings contaminated with PHE or PYR and this effect is mainly attributed by increased detoxification activity.  相似文献   

5.
Wang C  Zhang S  Wang P  Hou J  Qian J  Ao Y  Lu J  Li L 《Chemosphere》2011,84(1):136-142
In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4 d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a + b) and increased malondialdehyde and O2− and H2O2 content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA + 50 μM Pb or 100 μM SA + 50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O2− and H2O2 content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.  相似文献   

6.
The present investigation determined the effects of epibrassinolide (EBL) on the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), and polyamine (PA) and antioxidant potential of 7-d old Raphanus sativus L. cv. ‘Pusa chetki’ seedlings grown under Cr (VI) metal stress. Reduced titers of free (0.767 μg g−1 FW) and bound (0.545 μg g−1 FW) IAA in Cr (VI) stressed seedlings were observed over untreated control. Supplementations of EBL to Cr (VI) stressed seedlings were able to enhance both free (2.14-5.68 μg g−1 FW) and bound IAA (2.45-7.78 μg g−1 FW) concentrations in comparison to Cr (VI) metal treatment alone. Significant rise in free (13.49 μg g−1 FW) and bound (12.17 μg g−1 FW) ABA contents were noticed for Cr (VI) stressed seedlings when compared to untreated control. No significant increase in ABA contents were recorded for Cr (VI) stressed seedlings upon supplementation with EBL over Cr (VI) treatment alone. A significant increase in Put (18.40 μg g−1 FW) and Cad (9.08 μg g−1 FW) contents were found for 10−9 M EBL plus Cr (VI) metal treatments when compared to Cr (VI) treatment alone. Spermidine (Spd) contents were found to decline significantly for EBL treatment alone or when supplemented with Cr (VI) treatments over untreated controls and Cr (VI) treatment alone. Antioxidant levels were found to enhance, with glutathione (57.98 mg g−1 FW), proline (4.97 mg g−1 FW), glycinebetaine (39.01 μmol mL−1), ascorbic acid (3.17 mg g−1 FW) and phytochelatins (65.69 μmol g−1 FW) contents noted for EBL supplemented to Cr (VI) metal solution over Cr (VI) treatment alone. Reduced activities of guaiacol peroxidase (0.391 U mg−1 protein) and catalase (0.221 U mg−1 protein) and enhanced activities of glutathione reductase (7.14 U mg−1 protein), superoxide dismutase (15.20 U mg−1 protein) and ascorbate peroxidase (4.31 U mg−1 protein) were observed in seedlings treated with EBL plus Cr (VI) over Cr metal treatment alone. Reduced MDA (2.55 μmol g−1 FW) and H2O2 (33.24 μmol g−1 FW) contents were recorded for 10−9 M EBL supplemented to Cr (VI) stress over Cr (VI) treatment alone. Enhancement in free radical scavenging potential as indicated by higher values of 1,1-diphenylpicrylhydrazyl, deoxyribose and reducing power activity assays, and increased levels of phenols and soluble sugars also showed significant influence of EBL in alleviating Cr (VI) stress in radish seedlings.  相似文献   

7.
Wang C  Luo X  Tian Y  Xie Y  Wang S  Li Y  Tian L  Wang X 《Chemosphere》2012,86(5):530-537
In the present study, lanthanum (La) as a representative REE was used to explore the mechanisms for alleviation of Cd-induced oxidative damage by extraneous La at appropriate concentrations, and to assess ecological risk of combination of Cd and La at higher concentrations in roots of Vicia faba L. seedlings. The seedlings were hydroponically cultured for 15 d under nutrient solution, 6 μmol L−1 CdCl2, and combination of 6 μmol L−1 CdCl2 and increasing concentrations of La, respectively. The results showed that the supplementation with low concentrations of exogenous La (<120 μmol L−1) led to reduced contents of Cd, Ca, Cu, Zn, Mn or Fe element and increased activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) isozymes as well as heat shock protein 70 (HSP 70) production in the roots. However, the supplementation with higher La (>120 μmol L−1) showed the adverse effects. The contents of Cd elevated above the single Cd treatment in the roots, accompanying with the decline of antioxidant isozyme’s activities and HSP 70, and increment of carbonylated proteins and endoprotease isozyme’s activities. The results also showed that the root growth was not only related to carbonylated proteins, but also to indole acetic acid oxidase activities. Therefore, the supplemented extraneous La contributed to biphasic effects: stimulated antioxidation at lower concentrations and pro-oxidation at higher concentrations against Cd-induced oxidative stress in the roots.  相似文献   

8.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

9.
Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-β-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO4), with IC50 values of 0.82 μM and 0.85 μM, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility.  相似文献   

10.
Hyperaccumulators are grown in contaminated soil and water in order that contaminants are taken up and accumulated. Transport of metals from soil to plant is initially dependent on the solubility and mobility of metals in soil solution which is controlled by soil and metal properties and plant physiology. Complexation with organic and inorganic ligands may increase mobility and availability of metals for plants. In this work the influence of desferrioxamine-B (DFO-B), which naturally is produced in the rhizosphere, and zeolite on Cd accumulation in root and shoot of Thlaspi caerulescens (Cd hyperaccumulator) was investigated. Plants were grown in pots with clean quartz sand, amended with 1% zeolite; treatment solutions included 0, 10, and 100 μM Cd and 70 μM DFO-B. Addition of zeolite to the quartz sand significantly reduced Cd concentration in plant tissues and translocation from root to shoot. On contrary, DFO-B considerably enhanced Cd sorption by roots and translocation to aerial part of plants. Treating the plants with zeolite and DFO-B together at 10 μM Cd resulted in reduction of the bioaccumulation factor but enhancement of Cd translocation from root to shoot at the rate of 13%. In contrast, at 100 μM Cd in the solution both bioaccumulation and translocation factors decreased. Total metal accumulation as a key factor for evaluating the efficiency of phytoremediation was highly influenced by treatments. Presence of zeolite in pots significantly decreased total Cd accumulation by plants, whereas, DFO-B clearly enhanced it.  相似文献   

11.
Pradhan A  Seena S  Pascoal C  Cássio F 《Chemosphere》2012,89(9):1142-1150
Increased commercialisation of nanometal-based products augments the possibility of their deposition into aquatic ecosystems; this, in turn, may pose risks to aquatic biota and associated ecological functions. Freshwater invertebrate shredders mostly use microbially-colonized plant litter as food resource and play an important role in aquatic detritus food webs. We assessed lethal effects of nanoCuO on the shredder Allogamus ligonifer (Trichoptera, Limnephilidae) by determining the concentration that induced 50% of death (LC50), and sublethal effects of nanoCuO on the feeding behaviour and growth of the shredder by exposing the animals to: (i) stream water supplemented with nanoCuO and microbially-colonized leaves, and (ii) stream water (without nanoCuO) and microbially-colonized leaves pre-exposed to nanoCuO. Results from acute lethal tests showed that the 96 h LC50 of nanoCuO was very high (569 mg L−1). In the absence of nanoparticles, leaf consumption rate was 0.27 mg leaf DM mg−1 animal DM d−1 and the shredder growth rate was 56 μg animal DM mg−1 animal DM d−1. A significant inhibition in leaf consumption rate (up to 47%) and invertebrate growth rate (up to 46%) was observed when shredders were exposed to the higher tested sublethal concentration of nanoCuO (75 mg L−1) through either contaminated stream water or pre-contaminated food. The exposure to increased nanoCuO concentration via water or pre-contaminated food led to higher accumulation of copper in the larval body. Leached water-soluble ionic copper from the nanoCuO adsorbed or accumulated in the shredder (up to 10.2% of total Cu) seemed to influence the feeding behaviour and growth of the shredder.  相似文献   

12.
Zhao X  Zhang B  Liu H  Qu J 《Chemosphere》2011,83(5):726-729
An integrated electro-oxidation and electrocoagulation system was designed and used to remove As(III) and F ions from water simultaneously. Dimensionally stable anodes (DSA), Fe electrodes, and Al electrodes were combined into an electrochemical system. Two pieces of DSA electrodes were assigned as the outside of the Fe and Al electrodes and were directly connected to the power supply as anode and cathode, respectively. The Fe and Al ions were generated by electro-induced process simultaneously. Subsequently, hydroxides of Fe and Al were formed. Arsenic ions are mainly removed by iron hydroxides and F ions are mainly removed by the Al oxides. At the initial concentration of 1.0 mg L−1, most of As(III) was transferred into As(V) within 40 min at current density of 4 mA cm−2, whereas F ions can be efficiently removed simultaneously. The effect of the ratio of Fe and Al plate electrodes and current density on the removal of As(III) and F was investigated. With one piece of Fe plate electrode and three pieces of Al plate electrodes, it is observed that As(III) with concentration of 1 mg L−1 and F with concentration of 4.5 mg L−1 can be removed and their final concentrations were below the values of 10 μg L−1 and 1.0 mg L−1, respectively within 40 min. Removal efficiency of As(III) increases with the increase of solution pH. However, in the pH range of 6-7, removal efficiency of F is the largest.  相似文献   

13.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

14.
Dieldrin, one of persistent pesticides, is highly resistant to biotic and abiotic degradation. It is accumulated in organisms. Recent studies suggest that dieldrin exerts a potent cytotoxic action on cells exposed to oxidative stress. In this study, the effect of dieldrin on rat thymocytes exposed to hydrogen peroxide (H2O2)-induced oxidative stress was examined. Dieldrin at 5 μM and H2O2 at 300 μM slightly increased cell lethality from a control value of 5.4 ± 0.5% (mean ± standard deviation of four experiments) to 7.8 ± 1.3% and 9.0 ± 0.3%, respectively. Simultaneous application of dieldrin and H2O2 significantly increased cell lethality to 46.2 ± 1.8%. The synergistic increase in cell lethality was dependent on dieldrin concentration (0.3–5 μM) but not on H2O2 concentration (30–300 μM). Dieldrin accelerated H2O2-induced cell death, which was estimated with the help of annexin V-FITC and propidium iodide. Presence of either dieldrin or H2O2 decreased the cellular content of nonprotein thiol and increased intracellular Zn2+ concentration. The combination of dieldrin and H2O2 further pronounced these effects. TPEN, a chelator of intracellular Zn2+, significantly attenuated the synergistic increase in cell lethality induced by dieldrin and H2O2. It is, therefore, suggested that dieldrin augments the cytotoxicity of H2O2 in a Zn2+-dependent manner.  相似文献   

15.
Liu X  Zhang S  Shan X  Zhu YG 《Chemosphere》2005,61(2):293-301
Effects of different concentrations of arsenite and arsenate (0-16 mg/l) on seed germination, relative root length and shoot height, arsenic accumulation in young seedlings, alpha-amylase, beta-amylase and total amylolytic activity in wheat were investigated in order to elucidate the toxicity of arsenic in the early developmental stage. Germination percentages of different wheat varieties had different responses to arsenic species and decreased significantly with increasing arsenic concentrations except Duokang 1. Relative root length (RRL) and relative shoot height (RSH) of wheat seedlings decreased with increasing concentrations of arsenite and arsenate. The relative root lengths were correlated with the relative shoot heights for arsenite (r2 = 0.79) and arsenate (r2 = 0.77). Arsenic uptake by seedlings increased with the increasing concentrations of arsenite or arsenate and followed the Michaelis-Menten kinetics function. The average total amylolytic activity and beta-amylase activity had no significant difference comparable to that of controls at the concentration 2 mg/l arsenite or arsenate, but decreased apparently when the concentration was higher than 2 mg/l. Whereas the alpha-amylase activity decreased with increasing concentrations of arsenite or arsenate over the whole concentration range. Arsenite decreased all the endpoints more remarkably than arsenate. In comparison, shoot height and root length were more sensitive to arsenic than other endpoints and might be used as indicators for arsenic toxicity.  相似文献   

16.
The protective effect of hydroxytyrosol (HT), a strong antioxidant compound from extra virgin olive oil, against TCDD induced toxicity was investigated in human peripheral blood mononuclear cells (PBMC). PBMC (1 × 106 cells mL−1) were divided into four groups and were incubated in a CO2 incubator (5% CO2) for 12 h with vehicle, TCDD (10 nM), TCDD + HT (10 nM + 100 μM) and HT alone (100 μM) respectively. To clarify the role of HT against TCDD induced cytotoxicity, oxidative stress and the levels of antioxidant enzymes were assessed. Incubation of PBMC with TCDD significantly decreased cell viability, catalase (CAT) and glutathione peroxidase (GPx) and increased the levels of superoxide dismutase (SOD), glutathione reductase (GR) and oxidative stress markers such as lipid peroxidation products (LPO), protein carbonyl content (PCC) and reactive oxygen species (ROS). Whereas, HT had an effective antioxidant property as observed by the increased cell viability, normalization of antioxidant enzymes and decreased levels of LPO, PCC and ROS in PBMC co-treated with HT and TCDD. Apoptosis detection and comet assay results shows that HT, by acting as an antioxidant, prevents the damage to DNA induced by TCDD. In addition light microscopic and histopathological observations revealed that the cells are apoptotic and degenerated during TCDD treatment, whereas cells showed intact morphology during co-treatment with HT. On the whole, the results reveal that HT exerts a promising antioxidant potential in protecting the PBMC against TCDD induced oxidative stress, which might be due to the presence of catechol moiety in its structure.  相似文献   

17.
Bajda T 《Chemosphere》2011,83(11):1493-1501
Due to its relatively low solubility, mimetite Pb5(AsO4)3Cl may control Pb and As(V) solution levels at a low value in contaminated soils. The time-dependent dissolution of mimetite by low-molecular-weight organic acids (LMWOAs) such as acetic, lactic, citric, and ethylene diamine tetra-acetic acid (EDTA) was determined. At pH 3.5, the presence of citric acid or EDTA significantly increases the solubility of mimetite while acetic or lactic acids show little effect. The effect of all organic anions on the dissolution of mimetite increased with the increase in solution pH. The rate of mimetite dissolution depended on the kind and concentration of organic solvents in the sequence rEDTA > rlactate > racetate > rcitrate. Soluble Pb and As(V) released in LMWOAs and EDTA were higher than the WHO guideline value for these elements in drinking water (10 μg As(V) L−1, 10 μg Pb L−1). This suggests that soil organic acids in rhizosphere can potentially liberate Pb and As(V) from mimetite in contaminated soils.  相似文献   

18.
Hojaji E 《Chemosphere》2012,89(3):319-326
The binding behavior of lignin for Pb, Cu, Co, Mn, Cd and Ni was studied using the diffusive gradients in thin films technique (DGT). Samplers with different structures of diffusive gel were used in the well-stirred systems containing known concentrations of metals along with (a) 10, 20 and 40 μM lignin and; (b) 0.64 and 6.47 μM Suwannee river fulvic acid + 40 μM lignin at an ionic strength of 0.01 M (NaNO3) and pH = 7. Diffusion coefficients of lignin complexes in acrylamide gels were estimated and found to be less than 5% of the equivalent coefficients for the uncomplexed metal ions. These values were used to calculate concentrations of labile metals from DGT measurements in solutions, where lignin could discriminate metals in the order of Pb+2 > Cu+2 > Cd+2 > Ni+2 > Co+2 > Mn+2. Stability constants (Log K) were calculated using Visual MINTEQ II and WHAM V software. The K values were compared with the stability constants from titration of Pb and Cd with 10 μM lignin aqueous samples and with those of humic substances in natural waters. The constants obtained from measurement of complexing capacities might bias the real corresponding values unless two line regression analyses on titration data are considered. The DGT study of fractionation of metal species at varying ratios indicated that the proportion of organic complexes decreased with increasing ratios and gradually more metals were exchanged with inorganic phases. Speciation of Pb and Cd is affected by the concentrations of FA, Cd is dominantly bound with FA while Pb is evenly partitioned between the ligands. The comprehensive knowledge of metal-lignin complexes sheds some light on in situ operational speciation information that can be achieved by DGT.  相似文献   

19.
Hormonal activities of new brominated flame retardants   总被引:1,自引:0,他引:1  
  相似文献   

20.
Cadmium (Cd) stress may cause serious physiological, ultramorphological and biochemical anomalies in plants. Cd-induced physiological, subcellular and metabolic alterations in two transgenic cotton cultivars (BR001, GK30) and their parent line (Coker 312) were evaluated using 10, 100 and 1000 μM Cd. Germination, fresh biomass of roots, stems and leaves were significantly inhibited at 1000 μM Cd. Root volume tolerance index significantly increased (124.16%) in Coker 312 at 1000 μM Cd. In non-Cd stressed conditions, electron micrographs showed well-configured root meristem and leaf mesophyll cells. At 1000 μM Cd, greater ultramorphological alterations were observed in BR001 followed by GK30 and Coker 312. These changes were observed in nucleus, vacuoles, mitochondria and chloroplast. Dense precipitates, probably Cd, were seen in vacuoles, which were also attached to the cell walls. A considerable increase in number of nuclei, vacuoles, starch granules and plastoglobuli was observed in the electron micrographs of both roots and leaves at 1000 μM Cd. MDA contents were higher in roots of BR001 at 1000 μM Cd. Mean values of SOD activity in leaves of both BR001 and GK30 at 1000 μM Cd significantly increased as compared to the controls. POD activity in roots of BR001 and Coker 312 was greater at all Cd (10, 100, 1000 μM) levels over the control. Regarding APX, highest percent increase (71.64%) in roots of GK30 at 1000 μM Cd was found. Non-significant differences in CAT activity were observed at all levels of Cd stress in leaves of BR001 and GK30. Both transgenic cotton cultivars and their parental line invariably responded towards Cd stress. However, Coker 312 showed Cd-resistant behavior as compared to its progeny lines (BR001 and GK30).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号