首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sesuvium portulacastrum (L.) L., a facultative halophyte, is considered a suitable candidate for the phytoremediation of metals. An investigation of As accumulation and tolerance was conducted in Sesuvium plants upon exposure to As(V) (100-1000 μM) for 30 d. Plants demonstrated a good growth even after prolonged exposure (30 d) to high As(V) concentrations (1000 μM) and a significant As accumulation (155 μg g−1 dry weight) with a bioaccumulation factor of more than ten at each concentration. The results of shoot and root dry weight, malondialdehyde accumulation, photosynthetic pigments, and total soluble proteins demonstrated that plants did not experience significant toxicity even at 1000 μM As(V) after 30 d. However, metabolites (total non-protein thiols and cysteine) and enzymes (serine acetyltransferase, cysteine synthase and γ-glutamylcysteine synthetase) of thiol metabolism, in general, remained either unaffected or showed slight decline. Hence, plants tolerated high As(V) concentrations without an involvement of thiol metabolism as a major component. Taken together, the results indicate that plants are potential As accumulator and may find application in the re-vegetation of As contaminated sites.  相似文献   

2.
Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha−1) and NPK fertilizer (33 g plant−1) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.  相似文献   

3.
Poplar (Populus) species are seen as candidates for removing heavy metal contamination from polluted soil. A bottom-up multidisciplinary approach was utilized to compare the performances of clones 58-861 and Poli (Populus nigra) and A4A, a Populus nigra × Populus deltoides hybrid to Cd toxicity. Qualitative and quantitative differences in their tolerance to Cd exposure and the uptake, accumulation and translocation of Cd were noted following the hydroponic exposure of rooted cuttings to 20 μM CdSO4 for either 48 h or 14 d. Cadmium was less toxic for the hybrid clone A4A as compared to Poli and 58-861. Cd uptake and root to shoot translocation were determined by AAS, and its compartmentation was analyzed using SEM/EDX. A comparative proteomic approach was utilized to identify changes in proteins expression according to dose and time of exposure. Toxicity to Cd mainly influenced proteins related to general defense, stress response and carbohydrate metabolism.  相似文献   

4.
This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly α-, β-, γ- and δ-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The β-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil → root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil → air → shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles → shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere.  相似文献   

5.
Xue PY  Yan CZ 《Chemosphere》2011,85(7):1176-1181
Worldwide contamination of arsenic in aquatic systems requires the development of a cost-effective, in situ phytoremediation technology. Hydrilla verticillata (L.f.) Royle, a submerged macrophyte widely distributed throughout the world, has the potential to effectively remove heavy metals from water. In order to understand the potential of H. verticillata for As phytofiltration and its impacts on As cycling in the water system, we investigated As accumulation, speciation and translocation in H. verticillata plants. Plant shoots showed a significant accumulation of As, with a maximum of >700 μg g−1 dry weight (DW) after exposure to 20 μM arsenate [As(V)] or arsenite [As(III)] for 4 d, with no significant differences between the As(V) and As(III) treatments (P > 0.05). In addition, results of an in planta transport experiment showed that, after exposure of root and shoot to 2 μM As(V) and As(III) for 4 d, the bioconcentration factor (BCF) in roots for As(V) was almost twofold than that of As(III). Higher As BCFs in roots compared to shoots was also observed. Arsenic accumulated primarily in the cell walls of root cells (>73% of the total As in roots) and in the soluble parts of leaves (>60% of the total As in leaves). Regardless of the form of As supplied [As(III) or As(V)], As(V) was the dominant form in roots and As(III) was the dominant form in leaves. Further, basipetal translocation of As in this plant (?17%) was markedly higher than acropetal translocation (?3%). Because of accumulation of As in the shoot and immobilization of As below ground in roots, H. verticillata is a potential As phytofiltrator for bioremediation.  相似文献   

6.
Meighan MM  Fenus T  Karey E  MacNeil J 《Chemosphere》2011,83(11):1539-1545
In addition to increasing the mobility of metal ions in the soil solution, chelating agents such as EDTA have been reported to alter both the total metal accumulated by plants and its distribution within the plant structures. Here, mature Mini-Sun Hybrid dwarf sunflowers exposed to 300 μM Cd2+ in hydroponic solution had initial translocation rates of at least 0.12 mmol kg−1 h−1 and reached leaf saturation levels within a day when a 3-fold molar excess of EDTA was used. EDTA also promoted cadmium transfer from roots to the shoots. A threefold excess of EDTA increased the translocation factor (TF) 100-fold, resulting in cadmium levels in the leaves of 580 μg g−1 and extracting 1400 μg plant−1. When plants were exposed to dissolved cadmium without EDTA, the vast majority of the metal remained bound to the exterior of the root. The initial accumulation could be successfully modeled with a standard biosorption pseudo second-order kinetic equation. Initial accumulation rates ranged from 0.0359 to 0.262 mg g−1 min−1. The cadmium binding could be cycled, and did not show evidence of saturation under the experimental conditions employed, suggesting it might be a viable biosorbant for aqueous cadmium.  相似文献   

7.
The effect of arbuscular mycorrhiza on heavy metal uptake and translocation was investigated in Cannabis sativa. Hemp was grown in the presence and absence of 100 microg g-1 Cd and Ni and 300 microg g-1 Cr(VI), and inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. In our experimental condition, hemp growth was reduced in inoculated plants and the reduction was related to the degree of mycorrhization. The percentage of mycorrhizal colonisation was 42% and 9% in plants grown in non-contaminated and contaminated soil, suggesting a significant negative effect of high metal concentrations on plant infection by G. mosseae. Soil pH, metal bioavailability and plant metal uptake were not influenced by mycorrhization. The organ metal concentrations were not statistically different between inoculated and non-inoculated plants, apart from Ni which concentration was significantly higher in stem and leaf of inoculated plants grown in contaminated soil. The distribution of absorbed metals inside plant was related to the soil heavy metal concentrations: in plant grown in non-contaminated soil the greater part of absorbed Cr and Ni was found in shoots and no significant difference was determined between inoculated and non-inoculated plants. On the contrary, plants grown in artificially contaminated soil accumulated most metal in root organ. In this soil, mycorrhization significantly enhanced the translocation of all the three metals from root to shoot. The possibility to increase metal accumulation in shoot is very interesting for phytoextraction purpose, since most high producing biomass plants, such as non-mycorrhized hemp, retain most heavy metals in roots, limiting their application.  相似文献   

8.
Phytoremediation is a promising and cost-effective strategy to manage heavy metal polluted sites. In this experiment, we compared simultaneously phytoextraction and phytostabilisation techniques on a Cd and Zn contaminated soil, through monitoring of plant accumulation and leaching. Lolium perenne plants were cultivated for 2 months under controlled environmental conditions in a 27.6 dm3-pot experiment allowing the collect of leachates. The heavy metal phytoextraction was promoted by adding Na-EDTA (0.5 g kg−1 of soil) in watering solution. Phytostabilisation was assessed by mixing soil with steel shots (1%) before L. perenne sowing. Presence of plants exacerbated heavy metal leaching, by improving soil hydraulic conductivity. Use of EDTA for phytoextraction led to higher concentration of heavy metal in shoots. However, this higher heavy metal extraction was insufficient to satisfactory reduce the heavy metal content in soil, and led to important heavy metal leaching induced by EDTA. On the other hand, addition of steel shots efficiently decreased both Cd and Zn mobility, according to 0.01 M CaCl2 extraction, and leaching. However, improvement of growth conditions by steel shots led to higher heavy metal mass in shoot tissues. Therefore, soil heavy metal mobility and plant metal uptake are not systematically positively correlated.  相似文献   

9.
The effects of nitrilotriacetate (NTA) and citric acid applications on metal extractability from a multiply metal-contaminated soil, as well as on their uptake and accumulation by Indian mustard (Brassica juncea) were investigated. Desorption of metals from the soil increased with chelate concentration, NTA being more effective than citric acid in solubilising the metals. Plants were grown in a sandy soil collected from a contaminated field site and polluted by Cd, Cr, Cu, Pb and Zn. After 43 days of plant growth, pots were amended with NTA or citric acid at 5 mmol kg-1 soil. Control pots were not treated with any chelate. Harvest of plants was performed 1 week after chelate addition. Soil water-, NH4NO3- and DTPA-extractable Cd, Cu, Pb and Zn fractions were enhanced only in the presence of NTA. In comparison to unamended plants, Indian mustard shoot dry weights suffered significant reductions following NTA application. NTA treatment increased shoot metal concentrations by a factor of 2-3, whereas citric acid did not induce any difference compared to the control. Chromium was detected in the above-ground tissues only after NTA amendment. Due to differences in dry matter yield, a significant enhancement of metal uptake was observed in NTA-treated plants for Cu and Zn.  相似文献   

10.
Bose S  Bhattacharyya AK 《Chemosphere》2008,70(7):1264-1272
The concentrations of different forms of Zn, Cu, Mn, Ni, Cd, Cr, Pb and Fe metals were determined for the roadside sludge collected from pickling-rolling and electroplating industrial area. In sludge the relative abundance of total heavy metals were Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and DTPA-extractable metals were in the order--Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Pot-culture experiment was conducted in soils amended with sludge (0%, 10%, 20%, 30%), pretreated with lime (0%, 0.5% and 1%). The soils were alkaline in nature (pH>8.3) with organic carbon contents were 0.34% and 0.72%. The most abundant total and bio-available metal was Fe. Two wheat seedlings were grown in each pot containing 3kg sludge-amended or control soil and the experiment was conducted till harvesting. Application of sludge increased both total and bio-available forms of metals in the soils, while lime application decreased the bioavailability of heavy metals in sludge-amended soils. The content of organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R2>0.7) with Fe, Mn, Cu, Ni and Cd. Though wheat plants are not accumulators, the translocation efficiency was appreciably high. The translocation factor from shoot to grain was found smaller than that of root to shoot of wheat plants. This makes an implication that the heavy metal accumulation was proportionally lesser in grain than in shoot. In, 10% sludge with 0.5% lime-amended soils; each of these toxic heavy metals was found to be within permissible range (USEPA). Hence, on the basis of present study, the best possible treatment may be recommended.  相似文献   

11.
Bi R  Schlaak M  Siefert E  Lord R  Connolly H 《Chemosphere》2011,83(3):318-326
The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15 mg kg−1 Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1 V cm−1) and direct current electrical field (DC, 1 V cm−1) with switching polarity every 3 h. The electrical fields were applied for 30 d for rapeseed and 90 d for tobacco, each experiment had three replicates. After a total of 90 d growth for rapeseed and of 180 d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils.  相似文献   

12.
The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.  相似文献   

13.
Cadmium (Cd) stress may cause serious physiological, ultramorphological and biochemical anomalies in plants. Cd-induced physiological, subcellular and metabolic alterations in two transgenic cotton cultivars (BR001, GK30) and their parent line (Coker 312) were evaluated using 10, 100 and 1000 μM Cd. Germination, fresh biomass of roots, stems and leaves were significantly inhibited at 1000 μM Cd. Root volume tolerance index significantly increased (124.16%) in Coker 312 at 1000 μM Cd. In non-Cd stressed conditions, electron micrographs showed well-configured root meristem and leaf mesophyll cells. At 1000 μM Cd, greater ultramorphological alterations were observed in BR001 followed by GK30 and Coker 312. These changes were observed in nucleus, vacuoles, mitochondria and chloroplast. Dense precipitates, probably Cd, were seen in vacuoles, which were also attached to the cell walls. A considerable increase in number of nuclei, vacuoles, starch granules and plastoglobuli was observed in the electron micrographs of both roots and leaves at 1000 μM Cd. MDA contents were higher in roots of BR001 at 1000 μM Cd. Mean values of SOD activity in leaves of both BR001 and GK30 at 1000 μM Cd significantly increased as compared to the controls. POD activity in roots of BR001 and Coker 312 was greater at all Cd (10, 100, 1000 μM) levels over the control. Regarding APX, highest percent increase (71.64%) in roots of GK30 at 1000 μM Cd was found. Non-significant differences in CAT activity were observed at all levels of Cd stress in leaves of BR001 and GK30. Both transgenic cotton cultivars and their parental line invariably responded towards Cd stress. However, Coker 312 showed Cd-resistant behavior as compared to its progeny lines (BR001 and GK30).  相似文献   

14.
Soil ecotoxicity assessment using cadmium sensitive plants   总被引:15,自引:0,他引:15  
Four crop plant species (sweet corn, Zea may; wheat, Triticum aestivum; cucumber, Cucumis sativus; and sorghum, Sorghum bicolor) were tested to assess an ecotoxicity in cadmium-amended soils. The measurement endpoints used were seed germination and seedling growth (shoot and root). The presence of cadmium decreased the seedling growth. The medium effective concentration values (EC50) for shoot or root growth were calculated by the Trimmed Spearman-Karber method. Due to the greater accumulation of Cd to the roots, root growth was a more sensitive endpoint than shoot growth. Bioavailability and transport of Cd within plant were related to concentration and species. The ratio of bioaccumulation factor (BAF) in the shoots to the roots indicated high immobilization of Cd in the roots. Seed germination was insensitive to Cd toxicity, and is not recommended for a suitable assay. Among the test plants and test endpoints, root growth of sorghum and cucumber appears to be a good protocol to assess ecotoxicity of soils contaminated by Cd.  相似文献   

15.
The impairment of root growth and photosynthetical functioning are the main impacts of trace elements on woody plant seedlings. In this work, we assessed the response of Holm oak (Quercusilex subsp. ballota) and mastic shrub (Pistacia lentiscus) seedlings to high concentrations of Cd and Tl in the rhizosphere. These are non-essential trace elements, with a potential high mobility in the soil-plant system. Seedlings of these species are frequently used in the afforestation of degraded soils in mining areas. Plants were exposed to different levels of Cd (20, 80 and 200 mg L−1) and Tl (2, 10 and 20 mg L−1) in a sand culture. Biomass allocation, growth rates, chlorophyll fluorescence and gas exchange were studied. Both metals affected root biomass. Cadmium produced an increase in the root mass ratio and a decrease in the specific leaf area of the plants in oak seedlings, while Tl did not provoke such response. Mastic plants were more sensitive to Tl and Cd than oak plants. Between elements, Tl provoked more severe toxic effects in the plants, affecting the antennae complexes and reaction centers of the photosystem II. Both elements decreased net assimilation rates (down to a 20% of the control plants) and stomatal conductance (5-10% of the values for the control plants). Cadmium was highly retained in the roots of both species, while Tl was highly translocated into the leaves. In general, Holm oak showed a higher tolerance for Cd than for Tl, and a higher resistance to both metals than mastic shrub, due to a high capacity for Cd retention at the root level. However, such accumulation in roots may induce water stress in the seedling exposed to Cd.  相似文献   

16.

The uptake, translocation, and human bioaccessibility of metals originating from atmospheric fine particulate matters (PM) after foliar exposure is not well understood. Lettuce (Lactuca sativa L.) plants were exposed to micronic PbO, CuO, and CdO particulate matters (PMs) by the foliar pathway and mature plants (6 weeks old) were analyzed in terms of: (1) metal accumulation and localization on plant leaf surface, and metal translocation factor (TF) and global enrichment factor (GEF) in the plants; (2) shoot growth, plant dry weight (DW), net photosynthesis (Pn), stomatal conductance (Gs), and fatty acid ratio; (3) metal bioaccessibility in the plants and soil; and (4) the hazard quotient (HQ) associated with consumption of contaminated plants. Substantial levels of metals were observed in the directly exposed edible leaves and newly formed leaves of lettuce, highlighting both the possible metal transfers throughout the plant and the potential for human exposure after plant ingestion. No significant changes were observed in plant biomass after exposure to PbO, CuO, and CdO-PMs. The Gs and fatty acid ratio were increased in leaves after metal exposure. A dilution effect after foliar uptake was suggested which could alleviate metal phytotoxicity to some degree. However, plant shoot growth and Pn were inhibited when the plants are exposed to PbO, and necrosis enriched with Cd was observed on the leaf surface. Gastric bioaccessibility of plant leaves is ranked: Cd?>?Cu?>?Pb. Our results highlight a serious health risk of PbO, CuO, and CdO-PMs associated with consumption of vegetables exposed to these metals, even in newly formed leaves in the case of PbO and CdO exposure. Finally, the study highlights the fate and toxicity of metal rich-PMs, especially in the highly populated urban areas which are increasingly cultivated to promote local food.

  相似文献   

17.
As a silicon hyperaccumulator, lowland rice takes up higher levels of As than many other plants due to silicic acid and arsenite sharing the same transporters (Lsi1 and Lsi2). Glomus intraradices (AH01) was inoculated to rice under different arsenite concentrations (0, 2 and 8 μM) in order to investigate the interactions between arbuscular mycorrhizal fungus and rice on the accumulation of arsenite. The relative mRNA expressions of Lsi1 and Lsi2 resulted in a down-regulating trend in mycorrhizal plants. Under 2 μM arsenite treatments, Lsi1 and Lsi2 were significantly decreased, by 0.7-fold (P < 0.05) and 0.5-fold (P < 0.01), respectively, in mycorrhizal plants when compared with non-mycorrhizal plants. This led to the decrease of arsenite uptake per unit of root dry mass. No organic As species were detected in both roots and shoots. The As(III)/As(V) ratios indicated that mycorrhizal plants immobilized most of the arsenite proportion in the roots and prevented its translocation from the roots to the shoots.  相似文献   

18.
Microbe-assisted phytoremediation provides an effective approach to clean up heavy metal-contaminated soils. However, severe drought may affect the function of microbes in arid/semi-arid areas. Streptomyces pactum Act12 is a drought-tolerant soil actinomycete strain isolated from an extreme environment on the Qinghai-Tibet Plateau, China. In this study, pot experiments were conducted to assess the effect of Act12 on Cd tolerance, uptake, and accumulation in amaranth (Amaranthus hypochondriacus) under water deficit. Inoculated plants had higher Cd concentrations (root 8.7–33.9 %; shoot 53.2–102.1 %) and uptake (root 19.9–95.3 %; shoot 110.6–170.1 %) than non-inoculated controls in Cd-treated soil. The translocation factor of Cd from roots to shoots was increased by 14.2–75 % in inoculated plants, while the bioconcentration factor of Cd in roots and shoots was increased by 10.2–64.4 and 53.9–114.8 %, respectively. Moreover, inoculation with Act12 increased plant height, root length, and shoot biomass of amaranth in Cd-treated soil compared to non-inoculated controls. Physiochemical analysis revealed that Act12 enhanced Cd tolerance in the plants by increasing glutathione, elevating superoxide dismutase and catalase activities, as well as reducing malondialdehyde content in the leaves. The drought-tolerant actinomycete strain Act12 can enhance the phytoremediation efficiency of amaranth for Cd-contaminated soils under water deficit, exhibiting potential for application in arid and semi-arid areas.  相似文献   

19.
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg−1) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot−1) was 4.3 times higher than that by ryegrass (1.5 μg pot−1). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21–38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.  相似文献   

20.
There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 microg g(-1). Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号