首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Biochar addition to soil is currently being investigated as a novel technology to remediate polluted sites. A critical consideration is the impact of biochar on the intrinsic microbial pollutant degradation, in particular at sites polluted with a mixture of readily biodegradable and more persistent organic pollutants. We therefore studied the impact of biochar (2% on dry weight basis) on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil with batch and column studies. The soil-water partitioning coefficient, K(d), was enhanced in the biochar-amended soil up to a factor 36, and petroleum hydrocarbon vapor migration was retarded accordingly. Despite increased sorption, in particular of monoaromatic hydrocarbons, the overall microbial respiration was comparable in the biochar-amended and unamended soil. This was due to more rapid biodegradation of linear, cyclic and branched alkanes in the biochar amended soil. We concluded that the total petroleum hydrocarbon degradation rate was controlled by a factor other than substrate availability and the reduced availability of monoaromatic hydrocarbons in the biochar amended soil led to greater biodegradation of the other petroleum compounds.  相似文献   

2.
Enhanced rhizosphere degradation uses plants to stimulate the rhizosphere microbial community to degrade organic contaminants. We measured changes in microbial communities caused by the addition of two species of plants in a soil contaminated with 31,000 ppm of total petroleum hydrocarbons. Perennial ryegrass and/or alfalfa increased the number of rhizosphere bacteria in the hydrocarbon-contaminated soil. These plants also increased the number of bacteria capable of petroleum degradation as estimated by the most probable number (MPN) method. Eco-Biolog plates did not detect changes in metabolic diversity between bulk and rhizosphere samples but denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified partial 16S rDNA sequences indicated a shift in the bacterial community in the rhizosphere samples. Dice coefficient matrices derived from DGGE profiles showed similarities between the rhizospheres of alfalfa and perennial ryegrass/alfalfa mixture in the contaminated soil at week seven. Perennial ryegrass and perennial ryegrass/alfalfa mixture caused the greatest change in the rhizosphere bacterial community as determined by DGGE analysis. We concluded that plants altered the microbial population; these changes were plant-specific and could contribute to degradation of petroleum hydrocarbons in contaminated soil.  相似文献   

3.

Petroleum hydrocarbons are potentially toxic for organisms due to the inherent properties, such as solubility, volatility, and biodegradability. The petroleum materials released from corroded old pipelines would pollute soils, shallow groundwater and air as a consequence, and threat the health of human and environment. Therefore, the removal of these compounds from environment is vital. The stability of these pollutants at the soil and their gradual accumulation over time would disrupt the normal function of the soil, such as reduced agricultural capability. In this research, the influence of two plant species (Bromus tectorum L. and Festuca arundinacea) with different amendments including arbuscular mycorrhizal fungi, alfalfa residues, and nutrient solution on the degradation rate of petroleum hydrocarbons in soil was studied. The results showed that the most effective treatment for petroleum remediation was related to B. tectorum L. plant when treated with mycorrhizal fungi and nutrient solution. The degradation rate during 40 days was about 83.27% when compared to the control. Arbuscular mycorrhizal associations are important in the restoration of degraded ecosystems because of the benefits to their symbiotic partners. This fungal phytotechnological mechanism is still in its infancy and there has been little research on aged-contaminated soils.

  相似文献   

4.
不同处理条件对石油污染土壤植物修复的影响   总被引:4,自引:0,他引:4  
针对石油烃植物修复过程中的主要影响因素,研究了不同植物种类、不同土壤调理剂和菌剂使用等不同条件对土壤中石油烃植物修复效果的影响.结果表明,不同种类的植物修复可使总石油烃的年降解率达到37.8% ~ 73.98%,其中大豆和碱蓬具有较好的修复效果;3种不同土壤调理剂对石油烃污染土壤修复的效果为商业添加剂>牛粪>蛭石;先微生物修复后种植植物的处理要优于单独的微生物修复及微生物、植物修复同步进行的处理.  相似文献   

5.
This study investigated the microbial degradation of 14C-labelled hexadecane, octacosane, phenanthrene and pyrene and considered how degradation might be optimised in three genuinely hydrocarbon-contaminated soils from former petroleum refinery sites. Hydrocarbon mineralisation by the indigenous microbial community was monitored over 23 d. Hydrocarbon mineralisation enhancement by nutrient amendment (biostimulation), hydrocarbon degrader addition (bioaugmentation) and combined nutrient and degrader amendment, was also explored. The ability of indigenous soil microflora to mineralise 14C-target hydrocarbons was appreciable; ≥16% mineralised in all soils. Generally, addition of nutrients or degraders increased the rates and extents of mineralisation of 14C-hydrocarbons. However, the addition of nutrients and degraders in combination had a negative effect upon 14C-octacosane mineralisation and resulted in lower extents of mineralisation in the three soils. In general, the rates and extents of mineralisation will be dependent upon treatment type, nature of the contamination and adaptation of the ingenious microbial community.  相似文献   

6.
Background, Aims and Scope It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Methods Microorganisms were analyzed in a surface water sample from a canal (Pančevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum - filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Results and discussion. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic type petroleum, such a trend has not been observed. The most intensive degradation of n-alkanes and isoprenoid aliphatic alkanes (in paraffinic oil) and isoprenoids (in naphthenic oil) was observed using the inorganic medium Kp in the light; the microbial conversion is somewhat lower with Kp in the dark; with organic medium Bh in the light the degradation is of low intensity; with the same medium in the dark the degradation is hardly to be seen. Steranes and triterpanes were not affected by microbial degradation under the conditions used in our experiments. Obviously, the petroleum biodegradation was restricted to the acyclic aliphatics (n-alkanes and isoprenoids). Conclusion Phormidium foveolarum (filamentous Cyanobacteria - blue-green algae) and Achanthes minutissima (diatoms, algae), microbial cultures isolated as dominant algae from a surface water in a wastewater canal of an oil refinery and a nitrogen plant, have degradable effects dominantly involving petroleum hydocarbons. Petroleum microbiological degradation is more intensive when inorganic medium (in the light) is applied. Having in mind that the inorganic pollutants have been released into the canal as well, this medium reflects more the natural environmental conditions. Polycyclic alkanes of sterane and triterpane type, in spite of the fact that these compounds could be degraded, have remained unchanged regarding abundance and distribution. Since this is the case even for naphthenic type petroleum (which is depleted in n-alkanes), it can be concluded that the biodegradation of petroleum type pollutants, under natural conditions, will be restrained to the n-alkane and isoprenoid degradation. Recommendation and Outlook Performed experiments and simulations of petroleum microbiological degradation may serve for the prediction of the fate of petroleum type pollutants, as well as for definition of conditions for bioremediation of some environmental segments.  相似文献   

7.
用洛阳铲采集某地区10座地下贮罐罐龄接近或超过10年的典型加油站场地不同深度土样,并分别用吹脱/捕集/热脱附/气相色谱法和快速溶剂萃取/硅酸镁净化/气相色谱法分析样品中的挥发性和萃取性石油烃,发现2座加油站疑似油品渗漏,其中1座为柴油渗漏,地下贮罐附近1.2 ~3.0 m深度土壤总石油烃含量16.1 ~24.6 g/kg,均超过荷兰土壤清除标准,另1座为汽油和柴油混合渗漏,其地下贮罐附近2.4m深度土壤总石油烃含量较高,但未超标.个别加油站场地较高的土壤天然有机物背景值可能计入EPH的分析结果,但其色谱指纹明显不同于石油烃.  相似文献   

8.

Purpose  

Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium.  相似文献   

9.
Cyclodextrins, especially random methylated betaCD (RAMEB) and hydroxypropyl betaCD (HPbetaCD), are becoming common enhancing additives in the bioremediation of soils formerly contaminated by hydrocarbons and/or other poorly bioavailable organic pollutants. Therefore, their degradation in the soil, particularly the most persistent RAMEB, has been of great concern. Like oil contaminants, these additives should be biodegradable via an environmentally safe technology. Hence, in this paper, the biodegradability of eight different cyclodextrins (CDs) in four different soils was examined under various treatment conditions in laboratory and pilot scale field experiments. This paper is the first report on the potential biological fate of CDs studied under a large variety of environmental conditions and in different soil ecosystems. Data on the potential relationship between CD biodegradation and the biological removal of hydrocarbons in the CD-amended contaminated soils are also given. All CDs were found to be more or less biodegradable; even the most persistent RAMEB was depleted from soils under favourable conditions. In the field experiments, the depletion of RAMEB to about 40% of its initial level was observed for a period of 2 years in hydrocarbon-contaminated soils of high organic matter and cell concentration.  相似文献   

10.
Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O2, CO2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day−1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day−1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.  相似文献   

11.
We present an approach for characterizing in situ microbial degradation using the 13C/12C isotope fractionation of contaminants as an indicator of biodegradation. The 13C/12C isotope fractionation of aromatic hydrocarbons was studied in anoxic laboratory soil percolation columns with toluene or o-xylene as the sole carbon and electron source, and sulfate as electron acceptor. After approximately 2 months' of incubation, the soil microbial community degraded 32 mg toluene l(-1) and 44 mg o-xylene l(-1) to less than 0.05 mg l(-1), generating a stable concentration gradient in the column. The 13C/12C isotope ratio in the residual non-degraded fraction of toluene and o-xylene increased significantly, corresponding to isotope fractionation factors (alphaC) of 1.0015 and 1.0011, respectively. When the extent of biodegradation in the soil column was calculated based on the measured isotope ratios (R(t)) and an isotope fractionation factor (alphaC=1.0017) obtained from a sulfate-reducing batch culture the theoretical residual substrate concentrations (C(t)) matched the measured toluene concentrations in the column. This indicated that a calculation of biodegradation based on isotope fractionation could work in systems like soil columns. In a field study, a polluted, anoxic aquifer was analyzed for BTEX and PAH contaminants. These compounds were found to exhibit a significant concentration gradient along an 800-m groundwater flow path downstream of the source of contamination. A distinct increase in the carbon isotope ratio (delta13C) was observed for the residual non-degraded toluene (7.2 per thousand ), o-xylene (8.1 per thousand ) and naphthalene fractions (1.2 per thousand ). Based on the isotope values and the laboratory-derived isotope fractionation factors for toluene and o-xylene, the extent to which the residual substrate fraction in the monitoring wells had been degraded by microorganisms was calculated. The results revealed significant biodegradation along the groundwater flow path. In the wells at the end of the plume, the bioavailable toluene and o-xylene fractions had been almost completely reduced by in situ microbial degradation. Although indane and indene showed decreasing concentrations downstream of the groundwater flow path, suggesting microbial degradation, their carbon isotope ratios remained constant. As the physical properties of these compounds are similar to those of BTEX compounds, the constant isotope values of indane and indene indicated that microbial degradation did not lead to isotope fractionation of all aromatic hydrocarbons. In addition, physical interaction with the aquifer material during the groundwater passage did not significantly alter the carbon isotope composition of aromatic hydrocarbons.  相似文献   

12.
The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate coefficients for the aerobic biodegradation of 13 volatile petroleum hydrocarbons which were artificially emplaced as a liquid mixture during a field experiment in an unsaturated sandy soil. Apparent first-order biodegradation rate coefficients were estimated by comparing the spatial evolution of the resulting vapor plumes to an analytical reactive transport model. Two independent reactive numerical model approaches have been used to simulate the diffusive migration of VOC vapors and to estimate degradation rate coefficients. Supplementary laboratory column and microcosm experiments were performed with the sandy soil at room temperature under aerobic conditions. First-order kinetics adequately matched the lab column profiles for most of the compounds. Consistent compound-specific apparent first-order rate coefficients were obtained by the three models and the lab column experiment, except for benzene. Laboratory microcosm experiments lacked of sensitivity for slowly degrading compounds and underestimated degradation rates by up to a factor of 5. Addition of NH3 vapor was shown to increase the degradation rates for some VOCs in the laboratory microcosms. All field models suggested a significantly higher degradation rate for benzene than the rates measured in the lab, suggesting that the field microbial community was superior in developing benzene degrading activity.  相似文献   

13.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

14.
The microbial activity in soils was a critical factor governing the degradation of organic micro-pollutants. The present study was conducted to analyze the effects of soil organic matter on the development of degradation potentials for polycyclic aromatic hydrocarbons (PAHs). Most of the degradation kinetics for PAHs by the indigenous microorganisms developed in soils can be fitted with the Logistic growth models. The microbial activities were relatively lower in the soils with the lowest and highest organic matter content, which were likely due to the nutrition limit and PAH sequestration. The microbial activities developed in humic acid (HA) were much higher than those developed in humin, which was demonstrated to be able to sequester organic pollutants stronger. The results suggested that the nutrition support and sequestration were the two major mechanisms, that soil organic matter influenced the development of microbial PAHs degradation potentials.  相似文献   

15.
Mesocosm studies using sub-Antarctic soil artificially contaminated with diesel or crude oil were conducted in Kerguelen Archipelago (49 degrees 21' S, 70 degrees 13' E) in an attempt to evaluate the potential of a bioremediation approach in high latitude environments. All mesocosms were sampled on a regular basis over six months period. Soils responded positively to temperature increase from 4 degrees C to 20 degrees C, and to the addition of a commercial oleophilic fertilizer containing N and P. Both factors increased the hydrocarbon-degrading microbial abundance and total petroleum hydrocarbons (TPH) degradation. In general, alkanes were faster degraded than polyaromatic hydrocarbons (PAHs). After 180 days, total alkane losses of both oils reached 77-95% whereas total PAHs never exceeded 80% with optimal conditions at 10 degrees C and fertilizer added. Detailed analysis of naphthalenes, dibenzothiophenes, phenanthrenes, and pyrenes showed a clear decrease of their degradation rate as a function of the size of the PAH molecules. During the experiment there was only a slight decrease in the toxicity, whereas the concentration of TPH decreased significantly during the same time. The most significant reduction in toxicity occurred at 4 degrees C. Therefore, bioremediation of hydrocarbon-contaminated sub-Antarctic soil appears to be feasible, and various engineering strategies, such as heating or amending the soil can accelerate hydrocarbon degradation. However, the residual toxicity of contaminated soil remained drastically high before the desired cleanup is complete and it can represent a limiting factor in the bioremediation of sub-Antarctic soil.  相似文献   

16.
Abstract

During the 1950s and 1960s, hundreds of thousands of underground storage tanks (and above-ground storage tanks) containing petroleum products and hazardous chemicals were installed. Many of these tanks either have been abandoned or have exceeded their useful lives and are leaking, thereby posing a serious threat to the nation’s surface and groundwater supplies, as well as to public health. Cleaning up releases of petroleum hydrocarbons or other organic chemicals in the subsurface environment is a real-world problem,

Biological treatment of hydrocarbon-contaminated soil is considered to be a relatively low-cost and safe technology; however, its potential for effectively treating recalcitrant wastes has not been fully explored. For millions of years, microorganisms such as bacteria, fungi, actinomycete, protozoa, and others have performed the function of recycling organic matter from which new plant life can grow.

This paper examines the biological treatment technology for cleaning up petroleum product-contaminated soils, with special emphasis on microbial enzyme systems for enhancing the rate of biodegradation of petroleum hydrocarbons. Classifications and functions of enzymes, as well as the microbes, in degrading the organic contaminants are discussed. In addition, the weathering effect on biodegradation, types of hydrocarbon degraders, advantages associated with enzyme use, methods of enzyme extraction, and future research needs for development and evaluation of enzyme-assisted bioremediation are examined.  相似文献   

17.
Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.  相似文献   

18.
Goal, Scope and Background.  The goal of this study was to understand the interaction between plants and microorganisms during petroleum-hydrocarbon bioremediation in Pacific Islands coastal soils. Total bacteria and hydrocarbon-degrading microorganisms population dynamics were examined in the rhizospheres of tropical trees and shrubs, which were evaluated for their phytoremediation potential in a greenhouse experiment. The respective and combined effects of plant roots and diesel contaminant on the microbial populations were determined in relation to diesel fuel depletion. An increase in the size of the hydrocarbon-degrading populations of microbes, elicited by rhizodeposition, is generally regarded as conducive to an enhanced degradation of petroleum hydrocarbon polutants in veaetated soil. Conclusion  The results suggest the quality of the rhizodeposition is plant-dependent and governs the type of diesel-degrader populations that will be enhanced by a given plant. Recommendations and Outlook  In the proposed phytoremediation-benefit model plant roots maintain high levels of hydrocarbon de-graders in uncontaminated soil. When the root enters a contaminated zone of soil, those hydrocarbon degraders that prefer the contaminant would switch to the contaminant as a carbon source, effectively removing the hydrocarbons. If the root exudates and the contaminant are equally attractive to the hydrocarbon degraders, the contaminant degradation would be less effective.  相似文献   

19.
典型禾本科植物对石油污染土壤的修复作用   总被引:2,自引:0,他引:2  
石油类污染物对土壤生态系统的结构与功能造成了较为严重的破坏,影响植物的生长,甚至直接影响到人类健康。选择典型禾本科植物-高粱和玉米,通过盆栽实验,种植于模拟石油污染的土壤中,植物成熟收割后,通过测定土壤中总石油烃的含量,植物体中多环芳烃和直链烷烃的含量,研究高粱和玉米对石油污染土壤的修复作用。结果显示:在种植高粱、玉米后,土壤中总石油烃含量明显降低,并且在收获的高粱、玉米植物体中直链烷烃和多环芳烃含量明显高于空白对照组(未检出)。说明高粱、玉米对石油烃具有一定的去除作用,且高粱对土壤中石油烃的去除作用高于玉米;高粱、玉米对土壤中的多环芳烃和直链烷烃具有一定的积累与富集作用。  相似文献   

20.
Principles of microbial PAH-degradation in soil   总被引:44,自引:0,他引:44  
Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is motivated by their ubiquitous distribution, their low bioavailability and high persistence in soil, and their potentially deleterious effect on human health. Due to high hydrophobicity and solid-water distribution ratios, PAHs tend to interact with non-aqueous phases and soil organic matter and, as a consequence, become potentially unavailable for microbial degradation since bacteria are known to degrade chemicals only when they are dissolved in water. As the aqueous solubility of PAHs decreases almost logarithmically with increasing molecular mass, high-molecular weight PAHs ranging in size from five to seven rings are of special environmental concern. Whereas several reviews have focussed on metabolic and ecological aspects of PAH degradation, this review discusses the microbial PAH-degradation with special emphasis on both biological and physico-chemical factors influencing the biodegradation of poorly available PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号