首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13C nuclear magnetic resonance spectroscopy (13C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants.  相似文献   

2.
Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238U in the range 0-87 mg kg(-1). Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg(-1) soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil.  相似文献   

3.
Chen XH  Zhao B 《Chemosphere》2007,68(8):1548-1555
A glasshouse experiment was carried out to study the effect of mycorrhizal formation by Gigaspora margarita, Glomus intraradices or Acaulospora laevis on plant growth and lanthanum (La) uptake of Astragalus sinicus L. in soils spiked with La at five levels (0, 1, 5, 10 and 20 mg kg(-1)). La application decreased mycorrhizal infection frequency and activity of fungal succinate dehydrogenase and alkaline phosphatase. Increasing La concentrations in soil led to increased La accumulation in tissues of both mycorrhizal and non-mycorrhizal plants, but inoculation with Gig. margarita or G. intraradices reduced La concentrations in shoots and roots at higher concentrations of La in the soil. Plant biomass and P concentrations in shoots and roots were reduced by La application, but increased by inoculation with Gig. margarita or G. intraradices. The results showed that appropriate AM fungi colonization could be effective in alleviating La toxicity in A. sinicus.  相似文献   

4.
A nursery experiment was conducted to evaluate the potential role of arbuscular mycorrhizal (AM) fungi in encouraging the vegetation cover on bauxite residue (red mud) sites. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions were grown in red mud with different amendments with and without AM fungi to assess mycorrhizal effects on plant growth, mineral nutrition, metal uptake and neutralization of bauxite residue. Inoculation of AM fungi significantly increased the plant growth, nutrient uptake and reduced Fe, Al accumulation in plant tissue and also improved the soil physico-chemical and biochemical properties. Gypsum and sludge amended treatments inoculated with AM fungi had maximum biomass, nutrient uptake and reduced accumulation of metals. The neutralization of red mud was significant in presence of AM fungi than control. The experiment provided evidence for the potential use of bermudagrass in combination with AM fungi for ecological restoration of bauxite residue sites.  相似文献   

5.
A greenhouse pot experiment was conducted to investigate the colonization of alfalfa roots by the arbuscular mycorrhizal (AM) fungus Glomus etunicatum and application of the non-ionic surfactant Triton X-100 on DDT uptake by alfalfa and depletion in soil. Mycorrhizal colonization led to an increase in the accumulation of DDT in roots but a decrease in shoots. The combination of AM inoculation and Triton X-100 application enhanced DDT uptake by both the roots and shoots. Application of Triton X-100 gave much lower residual concentrations of DDT in the bulk soil than in the rhizosphere soil or in the bulk soil without Triton X-100. AM colonization significantly increased bacterial and fungal counts and dehydrogenase activity in the rhizosphere soil. The combined AM inoculation of plants and soil application of surfactant may have potential as a biotechnological approach for the decontamination of soil polluted with DDT.  相似文献   

6.
Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance.  相似文献   

7.
As a silicon hyperaccumulator, lowland rice takes up higher levels of As than many other plants due to silicic acid and arsenite sharing the same transporters (Lsi1 and Lsi2). Glomus intraradices (AH01) was inoculated to rice under different arsenite concentrations (0, 2 and 8 μM) in order to investigate the interactions between arbuscular mycorrhizal fungus and rice on the accumulation of arsenite. The relative mRNA expressions of Lsi1 and Lsi2 resulted in a down-regulating trend in mycorrhizal plants. Under 2 μM arsenite treatments, Lsi1 and Lsi2 were significantly decreased, by 0.7-fold (P < 0.05) and 0.5-fold (P < 0.01), respectively, in mycorrhizal plants when compared with non-mycorrhizal plants. This led to the decrease of arsenite uptake per unit of root dry mass. No organic As species were detected in both roots and shoots. The As(III)/As(V) ratios indicated that mycorrhizal plants immobilized most of the arsenite proportion in the roots and prevented its translocation from the roots to the shoots.  相似文献   

8.
The fate and effects of selected heavy metals were examined in sediment from a restored salt marsh. Sediment cores densely covered with Spartina patens were collected and kept either un-amended or artificially amended with nickel (Ni) under standardized greenhouse conditions. Ni-amendment had no significant effect on the fate of other metals in sediments, however, it increased root uptake of the metals. Metal translocation into the shoots was small for all metals. Higher Ni concentrations in plants from amended cores were accompanied by seasonal reductions in plant biomass, photosynthetic capacity and transfer efficiency of open photosystem II reaction centers; these effects, however, were no longer significant at the end of the growing season. Root colonization by arbuscular mycorrhizal fungi (AMF) resembled that of natural salt marshes with up to 20% root length colonized. Although Ni-amendment increased AMF colonization, especially during vegetative growth, in general AMF were largely unaffected.  相似文献   

9.
Chen B  Christie P  Li X 《Chemosphere》2001,42(2):185-192
A modified glass bead compartment cultivation system is described in which glass beads continue to be used in the hyphal compartment but are replaced by coarse river sand in the compartments for host plant roots and mycorrhizal hyphae. Arbuscular mycorrhizal (AM) associations were established using two host plant species, maize (Zea mays L.) and red clover (Trifolium pratense L.) and two AM fungi, Glomus mosseae and G. versiforme. When the standard and modified cultivation systems were compared, the new method yielded much more fungal tissue in the hyphal compartment. Using G. versiforme as the fungal symbiont, up to 30 mg of fungal dry matter (DM) was recovered from the hyphal compartment of mycorrhizal maize and about 6 mg from red clover. Multi-element analysis was conducted on samples of host plant roots and shoots and on harvested fungal biomass. Concentrations of P, Cu and Zn were much higher in the fungal biomass than in the roots or shoots of the host plants but fungal concentrations of K, Ca, Mg, Fe and Mn were similar to or lower than those in the plants. There were also significant differences in nutrient concentrations between the two AM fungi and these may be related to differences in their proportions of extraradical mycelium to spores. The high affinity of the fungal mycelium for Zn was very striking and is discussed in relation to the potential use of arbuscular mycorrhiza in the phytoremediation of Zn-polluted soils.  相似文献   

10.
The increasing concentrations impact (0.02, 0.2 and 2 mg L−1) of a Sterol Biosynthesis Inhibitor (SBI) fungicide, propiconazole, was evaluated on development and sterol metabolism of two non-target organisms: mycorrhizal or non-mycorrhizal transformed chicory roots and the arbuscular mycorrhizal fungus (AMF) Glomus irregulare using monoxenic cultures. In this work, we provide the first evidence of a direct impact of propiconazole on the AMF by disturbing its sterol metabolism. A significant decrease in end-products sterols contents (24-methylcholesterol and in 24-ethylcholesterol) was observed concomitantly to a 24-methylenedihydrolanosterol accumulation indicating the inhibition of a key enzyme in sterol biosynthesis pathway, the sterol 14α-demethylase like in phytopathogenic fungi. A decrease in end-product sterol contents in propiconazole-treated roots was also observed suggesting a slowing down of the sterol metabolism in plant. Taken together, our findings suggest that the inhibition of the both AM symbiotic partners development by propiconazole results from their sterol metabolism alterations.  相似文献   

11.
Root colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in Veronica rechingeri growing in heavy metal (HM) and non-polluted soils of the Anguran Zn and Pb mining region (Iran). Three species could be separated morphologically, while phylogenetic analyses after PCR amplification of the ITS region followed by RFLP and sequencing revealed seven different AMF sequence types all within the genus Glomus. Rarefaction analysis confirmed exhaustive molecular characterization of the AMF diversity present within root samples. Increasing heavy metal contamination between the sites studied was accompanied by a decrease in AMF spore numbers, mycorrhizal colonization parameters and the number of AMF sequence types colonizing the roots. Some AMF sequence types were only found at sites with the highest and lowest soil HM contents, respectively.  相似文献   

12.
The effects of arbuscular mycorrhizal fungi (AMF) - Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg−1. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses.  相似文献   

13.
Violets from metal-enriched soils have controversially been described as both heavy-metal accumulators and excluders in the literature. The present study solves the issue for violets of the section Melanium (zinc violets, Viola lutea ssp. calaminaria and V. lutea ssp. westfalica; hartsease or wild pansy, Viola tricolor; and mountain pansy, V. lutea). The aims were to determine the concentrations of heavy metals in the soil and in the roots and shoots of field-collected plants, to evaluate the potential impact of colonisation by arbuscular mycorrhizal fungi on heavy-metal concentrations in the plant tissues, and to quantitatively define the localisation of the elements in root cross-sections. When these violets grow in low-metal soils, higher concentrations of the heavy metals were found in the roots and shoots than in the soil, whereas the opposite was seen in samples from high-metal soils. Under all field conditions examined, the roots of all of these species were colonised by arbuscular mycorrhizal fungi. However, V. tricolor was marginally colonised when the concentrations of Zn and P were higher in the soil. Determination of the spatial distribution of the elements in root cross-sections of these violets indicates tissue-specific deposition of elements within the vascular tissue, the cortex, and the rhizodermis. These data indicate that violets of the section Melanium are heavy-metal excluders.  相似文献   

14.
Background Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered. Materials and Methods In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg–1 soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U. Results Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg-1. At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg-1 stimulated, but 60 mg P kg-1 marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls. Conclusion Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments. Perspectives The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.  相似文献   

15.
Leung HM  Ye ZH  Wong MH 《Chemosphere》2007,66(5):905-915
A field survey of metal concentrations and arbuscular mycorrhizal (AM) components of plants growing on five mining sites was conducted in Chenzhou City, Hunan Province, Southern China and a control site in Hong Kong. Significant differences were observed in the average concentrations of total heavy metals (Pb, Zn, Cu, Cd) and one metalloid (As) in contaminated soils compared with the control site. Gramineae and Compositae were the dominant plant families growing on mine tailings, with Chrysanthemum moritolium (common chrysanthemum), Cynodon dactylon (Bermuda grass), Miscanthus florodulus (Sword grass) and Pteris vittata (Ladder brake fern) commonly found at all sites. AM fungal colonization was detected in most of the plants. Comparing the four common plant species, three components of mycorrhizal colonization (arbuscules, vesicles and coiled hyphae) were found in the roots of C. dactylon and P. vittata growing at Do Shun Long (DSL) mine site. Concentrations of As in fronds were 24-fold higher than in roots of P. vittata with the highest mycorrhizal colonization rate (73%) among all sampling sites. Extensive mycorrhizal colonization (85%) was also recorded in the roots of C. dactylon with As accumulation 57 times higher than in shoots. The four common plants found in metal contaminated sites had developed different strategies for survival in the contaminated sites with the aid of indigenous AM fungi.  相似文献   

16.
A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM?+?0 % COW, AM?+?1 % COW, and AM?+?3 % COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60 %, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.  相似文献   

17.
Bi YL  Li XL  Christie P 《Chemosphere》2003,50(6):831-837
In a pot experiment, red clover (Trifolium pratense) was grown in sterilized Zn-amended low available P soil (0, 50 or 400 mg Zn kg(-1)) with or without 100 mg kg(-1) added P and with or without inoculation with the arbuscular mycorrhizal (AM) fungus G. mosseae. When the plants were harvested after 40 days, AM colonization of the roots was still at an early stage, with only 14-38% of total root length colonized on average. AM colonization was highest in low-P soil, and was lowest in soil amended with 400 mg Zn kg(-1). Shoot yields were highest in AM plants with added P, but root yields were unaffected by AM inoculation. Shoot and root yields were higher with 100 mg added P kg(-1) soil, but lower with 400 mg Zn kg(-1) than 50 mg Zn kg(-1) or controls unamended with Zn. Shoot and root P concentrations were seldom higher in AM plants, but shoot P offtakes were higher in AM plants with added P. Concentrations of Zn and Cu were much higher in the roots than in the shoots. Shoot and root Zn and shoot Cu were lower, but root Cu was higher, in AM plants. Soil residual pH after plant growth was higher in AM treatments, and residual total Zn was also higher, indicating lower Zn uptake by AM plants. Soil solution pH was higher in AM treatments, and soil solution Zn was lower in the presence of mycorrhiza. The results are discussed in terms of AM protection of the plants against excessive shoot Zn uptake.  相似文献   

18.
Bi YL  Li XL  Christie P  Hu ZQ  Wong MH 《Chemosphere》2003,50(6):863-869
Application of topsoil over phytotoxic mine wastes is often practised to establish perennial plant communities on minespoil areas. In China, population pressure encourages attempts to remediate such areas by growing arable crop plants, but efforts to establish agricultural crops often fail. We report an outdoor pot experiment that compared the effects of two arbuscular mycorrhizal (AM) fungi, Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe and G. versiforme (Karsten) Berch, on the growth and nutrient uptake of maize (Zea mays L.) grown in different depths of soil layer overlying coal fly ash. Colonization by both AM fungi increased plant growth compared with non-mycorrhizal controls, with G. mosseae giving higher yields of maize than G. versiforme at the same depths of soil. Increasing soil depth led to increased plant yields. Mycorrhizal plants absorbed more nutrients than non-mycorrhizal controls, and translocated less Na to the shoots, perhaps protecting the plants from excessive Na accumulation. These preliminary results indicate that arbuscular mycorrhizas may make a substantial contribution to successful crop establishment in soils overlying areas of coal fly ash.  相似文献   

19.
Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF—Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.  相似文献   

20.
Zhu Y  Christie P  Laidlaw AS 《Chemosphere》2001,42(2):193-199
A randomised block glasshouse pot experiment compared the growth and Zn uptake of mycorrhizal and nonmycorrhizal white clover plants grown in a sterile soil/sand mixture containing 25 mg Zn kg(-1) to which five application rates of Zn (as ZnSO4) from 0 to 400 mg kg(-1) were made. Two mycorrhizal inocula infected roots from the field and from clover trap cultures, were compared. Mycorrhizal infection (ranging from 33% to 46% of total root length) and Zn application had little effect on plant growth. Increasing Zn application rate led to increased uptake of Zn in roots and shoots (especially roots), but the increases were significantly greater in non-mycorrhizal controls than in mycorrhizal treatments. In contrast, P uptake was higher in mycorrhizal than in non-mycorrhizal plants. Plants that received trap culture inoculum had significantly lower Zn uptake than those that received field inoculum. The results indicate that mycorrhizal infection may have exerted some protective effect against plant Zn accumulation at the range of soil Zn concentrations studied and may have immobilised Zn in or near the roots to some extent. However, this mycorrhizal effect cannot be explained simply by tissue dilution, hyphal sequestration or root immobilisation of Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号