首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
By using Caenorhabditis elegans (C. elegans) as a model animal, the present work is aimed to evaluate the acute toxicity of imidazolium-based bromide Ionic Liquids (ILs), and to elucidate the underlying mechanisms involved. Firstly, 24-h median lethal concentration (LC50) for eight ILs with different alkyl chain lengths and one or two methyl groups in the imidazolium ring were determined to be in a range of 0.09–6.64 mg mL−1. Four ILs were selected to investigate the toxic mechanisms. Mortality, levels of reactive oxygen species (ROS), lipofuscin accumulation and expression of superoxide dismutase 3 in C. elegans were determined after exposed to ILs at sub-lethal concentrations for 12 h. A significant increase in the levels of these biomarkers was observed in accordance with the results of 12-h lethality assay. The addition of 0.5% dimethyl sulfoxide, which acts as a radical scavenger, remarkably rescued the lethality of C. elegans and significantly decreased the ROS level in C. elegans. Our results suggest that ROS play an important role in IL-induced toxicity in C. elegans.  相似文献   

2.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

3.
Using the 2010 Deepwater Horizon oil spill in the Gulf of Mexico as an impetus, we explored the potential for TiO2-mediated photocatalytic reactive oxygen species (ROS) generation to increase the bioavailability (solubility) and biodegradability of weathered oil after a spill. Food grade TiO2, which is FDA approved for use as food additive in the United States, was tested as a photocatalyst for this novel application. Photocatalytic pre-treatment (0.05 wt.% TiO2, UV irradiation 18 W m?2, 350–400 nm) for 24 h in a bench top photoreactor increased the soluble organic carbon content of weathered oil by 60%, and enhanced its subsequent biodegradation (measured as O2 consumption in a respirometer) by 37%. Photocatalytic pre-treatment was also tested outdoors under sunlight illumination, but no significant increase in solubility or biodegradation was observed after 11 d of exposure. Although sunlight irradiation of food-grade TiO2 generated ROS (assessed by the degradation of 4-chlorophenol as a probe compound), the efficacy of weathered oil pre-treatment was apparently hindered by sinking of the photocatalysts under quiescent conditions and illumination occlusion by the oil. Overall, results indicate that photocatalytic pre-treatment to stimulate bioremediation of weathered oil deserves further consideration, but controlling the buoyancy and surface hydrophobicity of the photocatalysts will be important for future efforts to enable ROS generation in proximity to the target compounds.  相似文献   

4.
A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000 mg kg−1 in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235-10,980 mg kg−1) and accumulated biomass (with a mean dry weight of 25.7 g plant−1) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5 nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources.  相似文献   

5.
Wu Q  Qu Y  Li X  Wang D 《Chemosphere》2012,87(11):1281-1287
Here we investigated whether the assay system (10-d) in Caenorhabditis elegans can be used to evaluate chronic toxicity of chromium (Cr(VI)) at environmental relevant concentrations ranging from 5.2 μg L−1 to 260 μg L−1. The results indicated that lethality, locomotion behavior as revealed by head thrash, body bend, and forward turn, metabolism as revealed by pumping rate and mean defecation cycle length, intestinal autofluorescence, and ROS production were severely altered in Cr chronically exposed nematodes at environmental relevant concentrations. The most surprising observations were that head thrash, body bend, intestinal autofluorescence, and ROS production in 13 μg L−1 Cr exposed nematodes were significantly influenced. The observed adverse effects of Cr on survival, locomotion behavior, and metabolism were largely due to forming severe intestinal autofluorescence and ROS production. Therefore, our findings demonstrate the usefulness of chronic toxicity assay system in C. elegans in evaluating the chronic toxicity of toxicants at environmental relevant concentrations.  相似文献   

6.
Among the emerging literature addressing the biological effects of nanoparticles, very little information exists, particularly on aquatic organisms, that evaluates nanoparticles in comparison to non-nanocounterparts. Therefore, the potential effects of nano-scale and non-nano-scale TiO2 and ZnO on the water flea, Daphnia magna, were examined in 48-h acute toxicity tests using three different test media, several pigment formulations – including coated nanoparticles – and a variety of preparation steps. In addition, a 21-d chronic Daphnia reproduction study was performed using coated TiO2 nanoparticles. Analytical ultracentrifugation analyses provided evidence that the nanoparticles were present in a wide range of differently sized aggregates in the tested dispersions. While no pronounced effects on D. magna were observed for nano-scale and non-nano-scale TiO2 pigments in 19 of 25 acute (48-h) toxicity tests (EC50 > 100 mg L−1), six acute tests with both nano- and non-nano-scale TiO2 pigments showed slight effects (EC10, 0.5–91.2 mg L−1). For the nano-scale and non-nano-scale ZnO pigments, the acute 48-h EC50 values were close to the 1 mg L−1 level, which is within the reported range of zinc toxicity to Daphnia. In general, the toxicity in the acute tests was independent of particle size (non-nano-scale or nano-scale), coating of particles, aggregation of particles, the type of medium or the applied pre-treatment of the test dispersions. The chronic Daphnia test with coated TiO2 nanoparticles demonstrated that reproduction was a more sensitive endpoint than adult mortality. After 21 d, the NOEC for adult mortality was 30 mg L−1 and the NOEC for offspring production was 3 mg L−1. The 21-d EC10 and EC50 values for reproductive effects were 5 and 26.6 mg L−1, respectively. This study demonstrates the utility of evaluating nanoparticle effects relative to non-nano-scale counterparts and presents the first report of chronic exposure to TiO2 nanoparticles in D. magna.  相似文献   

7.
Although a number of manufactured nanoparticles are applied for the medical and clinical purposes, the understanding of interaction between nanomaterials and biological systems are still insufficient. Using nematode Caenorhabditis elegans model organism, we here investigated the in vivo toxicity or safety of hydroxylated fullerene nanoparticles known to detoxify anti-cancer drug-induced oxidative damages in mammals. The survival ratio of C. elegans rapidly decreased by the uptake of nanoparticles from their L4 larval stage with resulting in shortened lifespan (20 d). Both reproduction rate and body size of C. elegans were also reduced after exposure to 100 μg mL−1 of fullerol. We found ectopic cell corpses caused by apoptotic cell death in the adult worms grown with fullerol nanoparticles. By the mutation of core pro-apoptotic regulator genes, ced-3 and ced-4, these nanoparticle-induced cell death were significantly suppressed, and the viability of animals consequently increased despite of nanoparticle uptake. The apoptosis-mediated toxicity of nanoparticles particularly led to the disorder of digestion system in the animals containing a large number of undigested foods in their intestine. These results demonstrated that the water-soluble fullerol nanoparticles widely used in medicinal applications have a potential for inducing apoptotic cell death in multicellular organisms despite of their antioxidative detoxifying property.  相似文献   

8.
Roh JY  Choi J 《Chemosphere》2011,84(10):1356-1361
In this study, the effect of organophosphorous (OP) pesticide, fenitrothion (FT), on the non-target organism was investigated using the soil nematode, Caenorhabditis elegans. Toxicity was investigated on multiple biological levels, from organism to molecular levels, such as, immoblity, growth, fertility, development, acetyl cholinesterase (AChE) activity and stress-response gene expressions. FT may provoke serious consequences on the C. elegans population, as it induced significant developmental disturbance. As expected, FT exposure inhibits AChE activity of C. elegans. The increased expression of the cytochrome p450 family protein 35A2 (cyp35a2) gene was also observed in FT exposed worms. To experimentally demonstrate the relationships between organism-level effects and the cyp35a2 gene expression in FT-exposed C. elegans, the integration of the gene expression with biochemical-, and organism level endpoints were attempted using a C. eleganscyp35a2 RNA interference (RNAi) and cyp35a2 mutant (gk317). The 24 h-EC50s of C. elegans on FT exposure were in the order of cyp35a2 RNAi in cyp35a2 mutant (gk317) > cyp35a2 mutant (gk317) > cyp35a2 RNAi in wildtype (N2) > wildtype (N2). The higher EC50 values of cyp35a2 RNAi and cyp35a2 mutant (gk317) compared to that of wildtypeC. elegans strongly supported that cyp35a2 gene plays an important role in the toxicity of FT towards C. elegans. The experiments with cyp35a2 RNAi also indicated that the development disturbance and decreased AChE activity, which were observed in FT exposed wildtype C. elegans were significantly rescued in the cyp35a2 RNAi C. elegans. Overall results suggest that the cyp35a2 may be an important gene for exerting FT toxicity in C. elegans.  相似文献   

9.
实验利用射频磁控溅射镀膜工艺,分别在光纤和石英玻璃上成功制备了ZnO薄膜。采用X射线衍射仪、原子力显微镜和荧光分光光度计对薄膜进行了测试分析,并对其光催化降解苯酚的性能进行了对比测试。结果表明,该薄膜具有良好的C轴取向性,光致发光峰分别位于362nm、421nm和486nm附近,且随着薄膜样品晶粒的减小而出现蓝移,光纤上ZnO薄膜的光催化能力是以石英玻璃为基底的ZnO薄膜的193倍,光催化效果显著。  相似文献   

10.
The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl2 were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants Kf of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl2 respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl2, respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size.  相似文献   

11.
This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO2 that is doped with Cu2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced.

Implications: The CuO-doped anatase TiO2 powder was successfully synthesized in this study by a sol–gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.  相似文献   


12.
Pesticides have been implicated in widespread amphibian declines. We assessed acute and chronic toxicity of two widely used herbicides to larval New Mexico (Spea multiplicata) and Plains (S. bombifrons) spadefoots from cropland and native grassland playas. Roundup WeatherMAX® (WM) toxicity estimates (48- and 216-h LC50; 48-h LC1) for both species were similar to environmental concentrations expected from accidental overspray. Chronic (30-day) exposure to WM at predicted environmental concentrations (2.0 and 2.8 mg glyphosate acid equivalents/L) reduced survival of both species. Ignite® 280 SL (IG) toxicity estimates (48-h LC50 and LC1) for both species were above predicted environmental concentrations of 1.0 mg glufosinate/L. Chronic exposure to predicted environmental concentrations of IG did not reduce survival of either species. Toxicity test results suggest that at predicted environmental concentrations IG would not cause extensive mortalities among larval New Mexico and Plains spadefoots. However, WM may cause extensive mortality among larvae of these species.  相似文献   

13.
Fenoll J  Ruiz E  Hellín P  Flores P  Navarro S 《Chemosphere》2011,85(8):1262-1268
The efficiency of ZnO and TiO2 suspensions in the photocatalytic degradation of two fungicides (cyprodinil and fludioxonil) in leaching water was investigated. The experiments were carried out at pilot plant scale using compound parabolic collectors under natural sunlight. The blank experiments for both irradiated compounds solutions showed that both oxides strongly enhanced the removal of the fungicides. The addition of an oxidant (Na2S2O8) to the ZnO or TiO2 increased the rate of photooxidation. The degradation of cyprodinil and fludioxonil followed first order kinetics according to the Langmuir-Hinshelwood model. Complete degradation of both fungicides was achieved within 4 h (t30W = 18 min) when treated with illuminated ZnO. The disappearance time (DT75), when referred to the normalized illumination time (t30W), was lower than 40 and 550 min (t30W = 2 and 40 min) for both fungicides using ZnO or TiO2, respectively. ZnO appeared to be more effective in cyprodinil and fludioxonil oxidation than TiO2 probably due to its nonstoichiometry.  相似文献   

14.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

15.
The effects of UV radiation on the acute toxicity of retene (7-isopropyl-1-methylphenanthrene) to Daphnia magna Straus were studied. Dehydroabietic acid (DHAA) from which retene is formed in the vicinity of pulp and paper industry was also studied. Pyrene, anthracene, and phenanthrene were used as model PAH compounds. The time taken for immobilization (ET50) was monitored under biologically effective UV-B dose rates of 240, 365, 565, and 650 mW m(-2) (UV-A and visible light also present). Median effective concentrations (EC50) were determined after a 15-min UV exposure (565 mW m(-2)) followed by 24 h in the dark. Retene (10-320 microg l(-1)) was not acutely toxic in the dark. The induction of phototoxicity was in agreement with the absorption properties of the compounds (absorption peak of retene at around 300 nm). Photoinduced toxicity followed an order pyrene > anthracene > retene. Phenanthrene and DHAA were not acutely phototoxic. Accumulation of the compound in Daphnia before UV exposure was essential. Some changes in the absorption spectra of the compounds were seen after a 5-h UV irradiation (565 mW m(-2)), but none of the irradiated compounds were acutely toxic without further UV exposure. Therefore, the enhanced acute toxicity was primarily due to internal photosensitization reactions rather than photomodification. The dissolved fraction of 25% pulp and paper mill effluent reduced phototoxicity by attenuating UV radiation. The phototoxicity of retene was a function of both the exposure concentration and the UV-B dose rate, but relatively high UV-B dose rates and concentrations were needed for the acute photoinduced toxicity.  相似文献   

16.
In streams, chemicals such as 17β-estradiol (E2) are likely to occur in pulses. We investigated uptake and biomarker responses in juvenile brown trout (Salmo trutta) of 3- or 6-h pulses of concentrations up to 370 ng E2 L−1. Uptake by the fish was estimated from disappearance of E2 from tank water. A single 6-h pulse of 370 ng E2 L−1 increased the plasma vitellogenin concentration, liver Erα- and vitellogenin-mRNA. Exposure to 150-160 ng E2 L−1 for 6 h increased vitellogenin in one experiment but not in another. Two 6-h pulses had a larger effect one pulse. Brown trout in the size range 24-74 g took up E2 linearly with time and exposure concentration with a concentration ratio rate of 20.2 h−1. In conclusion, the threshold for induction of estrogenic effects in juvenile brown trout at short term pulse exposure appears to be in the range 150-200 ng E2 L−1.  相似文献   

17.
Tire wear particles filed from the treads of end-of-life vehicle tires have been added to sea water to examine the release of Zn and the toxicity of the resulting leachate and dilutions thereof to the marine macroalga, Ulva lactuca. Zinc release appeared to be diffusion-controlled, with a conditional rate constant of 5.4 μg[L(h)1/2]−1, and about 1.6% of total Zn was released after 120 h incubation. Exposure to increasing concentrations of leachate resulted in a non-linear reduction in the efficiency of photochemical energy conversion of U. lactuca and, with the exception of the undiluted leachate, increasing accumulation of Zn. Phototoxicity was significantly lower on exposure to equivalent concentrations of Zn added as Zn(NO3)2, suggesting that organic components of leachate are largely responsible for the overall toxicity to the alga. Given the ubiquity and abundance of TWP in urban coastal sediments, the generation, biogeochemistry and toxicity of tire leachate in the marine setting merit further attention.  相似文献   

18.
以水解法制备的锐钛矿型TiO2为载体,制备了CuO/TiO2型光催化剂.以亚甲基蓝为对象,在可见光照射下研究了H2O3加入量、pH值和催化剂投加量对脱色效果的影响,同时与改性前的TiO2催化剂进行了脱色效果的对比.结果表明亚甲基蓝在碱性条件下能较好脱色,H2O2用量和CuO/TiO2催化剂投加量分别为每1 000 mL反应液各加入10 mL和0.1 g时脱色最好;另外,TiO2催化剂也在碱性条件下能较好脱色,H2O2用量和催化剂投加量分别为每1 000 mL反应液各加入12.5 mL和0.1 g时脱色最好.最优条件下对比实验表明,CuO/TiO2型催化剂在可见光照射下具有很高的催化活性,亚甲基蓝2 h脱色率达到88%,远好于改性前的TiO2和Degussa P25催化剂.  相似文献   

19.
纳米二氧化钛复合石墨烯催化剂的制备及处理染料废水   总被引:1,自引:0,他引:1  
以硫酸钛为原料,采用共沉淀法,制备了一系列纳米二氧化钛复合石墨烯催化剂,采用XRD和FTIR对样品进行表征。通过紫外光照射亚甲基蓝溶液光催化降解实验,研究石墨烯的加入量对TiO2光催化性能的影响,结果表明,TiO2-GO-5具有最佳的光催化性能。在pH=6.00、TiO2-GO-5的投加量为0.070 g/50 mL、光照3 h条件下,100 mg/L亚甲基蓝溶液的脱色率达到最大值为90.52%。  相似文献   

20.

A novel non-toxic hybrid BiVO4-GO-TiO2-polyaniline (PANI) (BVGT-PANI) composite with superior photocatalysis was successfully prepared via a one-pot hydrothermal reaction. The structural and morphological characterizations of the synthesized compounds were analyzed by a series of techniques. We found excellent photocatalytic efficiencies for methylene blue (MB) and phenol degradation under visible light irradiation after adhering the PANI to the photocatalyst. The degradation rates of MB and phenol reach up to approximately 85% and 80%, respectively, after 3 h of irradiation. For photodegradation MB, BVGTA exhibit the highest kapp rate constant of about 1.06?×?10?2 min?1, which is about 1.63-fold faster than BVG and 2.94-fold faster than BVGT. For photodegradation of phenol, BVGTA exhibits the highest kapp rate constant, of about 8.86?×?10?3min?1, which is about 1.2-fold faster than BVG and 1.96-fold faster than BVGT. Furthermore, vitro toxicity test against Bacillus subtilis and Staphylococcus aureus demonstrated that the nanophotocatalyst is non-toxic.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号