首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以厌氧氨氧化颗粒为对象,利用NH4+、NO2-、NO3-和N2O微电极测定了浓度连续分布,并建立微生物原位活性与N2O产生之间的关系.结果表明,NH4+和NO2-同步消耗的厌氧氨氧化活性区分布在颗粒的表层区域(0~1500μm),其中200~400μm活性最高;当NH4+-N浓度为14mg/L(c(NH4+):c(NO2-)=1:1.2)时,NH4+-N和NO2--N最大净体积消耗速率分别为1.19与1.65mg/(cm3·h).反硝化活性主要分布在1500~2500μm的深层区域,当采用...  相似文献   

2.
采用UASB反应器在改变NO2--N/NH4+-N比条件下,考察厌氧氨氧化系统对NH4+-N的超量去除特征、相关酶的催化活性以及污泥菌群结构.结果表明,随着进水NO2--N浓度降低,反应器对NH4+-N的去除量相比理论较大,在停供NO2--N情况下,反应器内NH4+-N去除可达55 mg/L.反应器内NH4+-N的去除并不是是来自进水中SO42-和Fe3+/EDTA络合物,而是存在NH4+-N的好氧硝化.过氧化氢酶测定联合分子生物学技术分析显示,好氧硝化的所需氧量分别来自进水和过氧化氢酶产氧.反应器底部污泥层的氨氧化菌(AOB)、厌氧氨氧化菌(AnAOB)活性优于上部污泥层,相反,上部污泥层的异养反硝化菌(HDB)活性优于底部污泥层,二者协同将NH4+-N转化为N2.  相似文献   

3.
基于自然的修复理念,以典型河道型水库—北运河流域沙河水库为研究对象,考察水位调度运行对其水生态环境的影响.结果表明,低水位运行期间,沙河水库月均出库水量增加149.48%,月均蒸发水量和渗透水量减少了34.17%和29.17%.沙河水库水质明显改善,沙河闸出库断面NH4+-N、TN和TP平均浓度由(2.53±0.89)、(14.18±5.06)、(0.50±0.02)mg·L-1降低到(1.12±0.11)、(5.61±1.45)、(0.19±0.01)mg·L-1,其中NH4+-N和TP稳定达到了地表水环境质量标准(GB 3838-2002)的IV类水要求(1.5 mg·L-1和0.3 mg·L-1).低水位运行期间,沙河水库库心区沉积柱(0~30 cm)和表层沉积物(0~4 cm)中TN、TP平均含量总体呈稳定下降趋势,降幅分别为57.62%、45.28%和64.16%、48.00%;沙河水库共记录水鸟70种...  相似文献   

4.
西安市某地下水源水厂石英砂滤池中滤料表面形成的氧化膜催化活性很低,基本不具备去除铁、锰、氨氮的能力,出水安全隐患较高,因此在中试滤柱系统中评价了石英砂滤料除铁(Fe2+)、锰(Mn2+)、氨氮(NH4+-N)效能,并进行活性滤料的性能优化.在此基础上,在水厂原有石英砂滤池中进行活性滤料的原位制备.结果表明,水厂石英砂滤料基本不具备去除Fe2+、Mn2+、NH4+-N能力.在中试滤柱系统中,经过3d挂膜,低浓度Fe2+、Mn2+、NH4+-N的去除率均可达93%以上.在滤池中进行原位改造后,进水NH4+-N浓度为(0.3±0.05) mg/L时,去除率由28%提高到90%,进水Mn2+浓度为(0.3±0.05) mg/L时,去除率由50%提高到80%.进一步分析滤料表征发现,改造后滤料形貌和结构均发生了改变.XRD分析结果表明,改造后滤料产生了新峰,证明了滤料具备了活性.改造后可满足案例水厂净水安全的需要,具有较高的实用价值.  相似文献   

5.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

6.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

7.
通过批式实验,得到超声波强化Anammox菌活性的最优工作参数,超声频率25kHz、超声时间3min、超声强度0.2 W/cm2,而后在此最优超声强化条件下采用固定床反应器接种传统活性污泥启动Anammox工艺.整个试验过程,温度维持在35℃.在启动阶段,水力停留时间(HRT)为2d,控制进水NH4+-N和NO2--N浓度为70mg/L.反应器运行至第38d,首次表现Anammox活性.运行至53d时,NH4+-N、NO2--N去除速率和去除率分别为30.81,34.97mgN/(L·d)和88.03%、99.91%,总氮去除速率和去除率达60.34mgN/(L·d)和86.20%.R1和R2分别稳定在1.14和0.18.在负荷提升阶段(53~135d),当进水NH4+-N和NO2--N负荷维持在最高值380mg/(L·d)时,NH4+-N和NO2--N平均去除效率分别为82.74%和97.89%.NH4+-N和NO2--N最大去除速率分别为320.67和379.85mgN/(L·d),最大总氮去除速率和去除率为698.00mgN/(L·d)和91.84%.负荷提高阶段末,R1稳定在1.18左右,R2接近于0.反应器内Anammox菌占主导,存在少量反硝化菌强化总氮去除.  相似文献   

8.
为探究磁性载体移动床生物膜反应器(MBBR)系统对不同浓度纳米ZnO胁迫的响应,构建2组MBBR开展纳米ZnO胁迫实验,通过对比普通与磁性载体MBBR中COD、NH4+-N去除性能、生物膜形貌、微生物群落及功能基因,分析磁性载体对纳米ZnO胁迫下MBBR中污染物去除性能及微生物的影响.结果表明:低浓度(5,10mg/L)纳米ZnO对COD、NH4+-N去除无显著影响;高浓度(30,50mg/L)纳米ZnO胁迫后,磁性载体MBBR的NH4+-N去除率分别降低10.57%和12.91%,低于普通载体的14.48%和16.94%.相比于NH4+-N,纳米ZnO胁迫对COD去除影响较小.此外,高浓度(30,50mg/L)纳米ZnO胁迫导致更多纳米ZnO颗粒团聚并吸附于磁性载体生物膜表面,继而改变了生物膜群落结构.在10mg/L的纳米ZnO胁迫下,磁性与普通载体生物膜中微单胞菌属(Micropruina)的相对丰度均有所提...  相似文献   

9.
将镁掺杂进水泥基材料铝酸三钙(C3A)制得新型富镁铝酸三钙(Mg@C3A)应用于水体氨氮(NH4+-N)和磷(PO43-)的共去除.通过批量实验,考察了Mg@C3A投加量、氮磷浓度、溶液pH值、温度等因素对NH4+-N、PO43-共去除的影响,并阐述了共去除机制.结果表明:Mg@C3A是由Mg掺杂C3A同构体和表面MgO组成,其中Mg的引入未改变C3A晶体结构和基本形貌.Mg@C3A材料对NH4+和PO43-具有良好的共去除效果.当Mg@C3A的投加量为3g/L,NH4+和PO43-的最大去除量分别为38.4,78.9mg/g;温度升高有利于Mg@C3A对NH4+和PO43-的共去除,而高pH值可促进NH4+的去除.Mg@C3A材料对NH4+的去除主要是OH-的中和作用和鸟粪石的沉淀作用主导,PO43-主要是与Mg2+或Al3+结合形成鸟粪石或磷酸铝被去除.  相似文献   

10.
以固定化微藻颗粒为原料,通过搭建流化床反应器强化微藻对氨氮(NH4+-N)的去除,设计了藻种、污水上升流速、光周期和光照强度四组单一变量实验,系统地研究了不同条件下微藻去除NH4+-N的能力.结果表明,当以固定化斜生栅藻为原料、污水上升流速为6.8m/h、光周期为8:16h和光照强度为4800Lux时,NH4+-N去除效果最优(96.7%).在最优操作条件下,探究了COD为200mg/L时微藻去除NH4+-N的潜力,结果表明,当NH4+-N初始浓度不高于50mg/L时,NH4+-N去除率高于95%.本实验建立了一套半连续微藻流化床实验方法,该方法显著减弱了微藻在生物同化过程中对有机碳源的依赖性,为低COD条件下微藻生物脱氮工艺的设计提供了技术参考和理论基础.  相似文献   

11.
为探究游离亚硝酸(FNA)侧流处理絮体污泥抑制亚硝酸盐氧化菌(NOB)活性启动全程自养脱氮(CANON)工艺的可行性,考察了FNA处理对氨氧化菌(AOB)和NOB活性的影响,探究在颗粒-絮体污泥SBR反应器中水力筛分的絮状污泥经侧流FNA处理的运行效果. 结果表明:0.6mg/L FNA处理后的R1经过30d运行,NH4+-N去除率恢复到处理前的水平,并且短程硝化稳定,系统平均出水总氮为13.84mg/L,且△NO3--N/△NH4+-N比值接近CANON反应方程式理论比值0.11,成功启动CANON工艺. 而0mg/L FNA处理的R2由于NOB大量增殖导致启动失败. 批次试验结果证实,经过0.6mg/L FNA处理后,6h内NOB活性仅为对照组(FNA=0mg/L)的16.39%,并且在随后的运行中并未发现NOB活性的恢复,NOB得到了有效的抑制. 但与此同时,AOB的活性也受到了影响,反应器中NH4+-N去除率仅为处理前的69.69%,AOB活性6h仅恢复68.06%.  相似文献   

12.
通过原位实验,对浅埋深黏土包气带中氮的迁移转化开展研究.结果表明,实测地下水埋深介于145.9~173.6cm,地下水毛细上升高度计算值可达297.0cm,土壤含水率除表层外介于0.30~0.45cm3/cm3;NH4+-N和NO3--N在地面以下155cm含量最高为1.43,23.00mg/kg,超出背景值1.13,21.05mg/kg;包气带含水率近饱和条件下,粘土对氮污染物迁移阻滞作用减弱,NH4+-N和NO3--N在1d内自地表迁移至155cm.浅埋深地下水减弱了黏土对氮污染物运移的阻滞作用.浅埋深地下水减弱了黏土对氮污染物运移的阻滞作用.  相似文献   

13.
郑照明  李军  马静  杜佳  赵白航 《中国环境科学》2016,36(10):2957-2963
通过批试实验研究了氨氮浓度对SNAD生物膜厌氧氨氧化性能的影响.SNAD生物膜反应器以生活污水为进水.进水NH4+-N和COD浓度平均值分别为70mg/L和180mg/L,出水NH4+-N,NO2--N,NO3--N和COD浓度平均值分别为2mg/L,2mg/L,7mg/L和50mg/L.SNAD生物膜具有良好的厌氧氨氧化活性.初始NH4+-N和NO2--N浓度都为70mg/L时,厌氧氨氧化批试NH4+-N、NO2--N和TIN去除速率分别为0.121kg N/(kg VSS·d),0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).采用Haldane模型可以很好的拟合氨氮浓度对厌氧氨氧化活性的影响.在高FA和低FA工况下氨氮浓度对厌氧氨氧化活性的抑制动力学常数相差不大.M1(FA浓度为0.7~20.4mg/L)和M2(FA浓度为6.3~190.5mg/L)的最大NO2--N理论去除速率rmax分别为0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半饱和常数Ks分别为9.5mg/L和6.1mg/L,氨氮自身抑制常数KI分别为422mg/L和597mg/L.氨氮(而不是游离氨)对SNAD生物膜的厌氧氨氧化活性起主要抑制作用.  相似文献   

14.
为探明焦作市大气湿沉降中硝态氮的污染水平,识别其来源及其形成过程,于2020年1月-2021年12月采集了焦作市大气湿沉降样品41个,测定并分析了TN、NH4+-N、NO3--N浓度以及δ15N-NO3-、δ18O-NO3-值.结果表明:(1)TN、NH4+-N、NO3--N浓度范围分别为2.52~13.27、0.11~1.70、1.64~8.31 mg/L,焦作市湿沉降中氮的主要存在形态为NO3--N,占比为52.11%~83.92%.(2)δ18O-NO3-、δ15N-NO3-值的范围分别为54.9‰~93...  相似文献   

15.
The recycling reverse osmosis(RO) membrane concentrate of some high-ammonia nitrogen(NH4+-N) organic wastewater to the biological unit could cause potassium ion(K+) accumulation, thereby affecting the removal of NH4+-N by activated sludge. Thus, the effects of high K+ stress on activated sludge nitrification performance was studied. The results showed that the high K+ stress promoted the floc sludge to produce more extr...  相似文献   

16.
玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能   总被引:6,自引:0,他引:6  
为探明玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能,研究了其对NH4+-N、NO3--N和NO2--N的吸附动力学过程;并用等温吸附模型对NH4+-N和NO3--N的吸附过程进行拟合,探讨制得生物炭对无机氮的吸附机理.结果表明,400℃和600℃制得玉米秸秆和玉米芯生物炭均呈碱性,表现为400℃ < 600℃;同种原材料,与400℃制得生物炭相比,600℃制得生物炭碱性含氧官能团数量较多,而酸性含氧官能团数量较少.400℃制得生物炭对NH4+-N的吸附能力较强(玉米秸秆和玉米芯生物炭的平衡吸附量分别为4.22和4.09mg/g);而600℃制得生物炭对NO3--N和NO2--N的吸附能力较强(玉米秸秆和玉米芯生物炭对NO3--N的平衡吸附量分别为0.73和0.63mg/g;对NO2--N的平衡吸附量分别为0.55和0.35mg/g).与NO3--N和NO2--N相比,玉米秸秆和玉米芯生物炭对NH4+-N的吸附能力更强,4种生物炭对NH4+-N的平衡吸附量是NO3--N/NO2--N的4.29~20.2倍.等温吸附模型拟合研究表明,玉米秸秆和玉米芯生物炭对水溶液中NH4+-N和NO3--N的吸附过程均可用Freundlich模型描述,其在生物炭表面的吸附是多分子层吸附.  相似文献   

17.
为有效处理高氨氮、低C/N比养猪废水,采用在土壤中布设木条形成木质框架的方法构建木质框架土壤渗滤系统(WFSI),并通过调控运行探讨其对化学需氧量(COD)、氨氮(NH4+-N)、总氮(TN)的处理效果.研究表明,对于COD、NH4+-N和TN分别为160-359、253-298和317-374mg/L的养猪废水,在(25±1)℃和表面水力负荷为0.2m3/m2·d条件下,系统可在30d启动成功并达到稳定运行,其COD、NH4+-N和TN去除率分别达到61.7%、85%和36.3%左右.分析表明,WFSI中同时存在异养反硝化和厌氧氨氧化等多种生物脱氮机制,其中厌氧氨氧化的脱氮贡献可达去除总氮的42.3%以上.  相似文献   

18.
本文研究了大黑汀水库表层沉积物碳氮磷污染负荷及分布特征,利用Peeper (pore water equilibriums)技术获取沉积物-水界面氮磷剖面特征,分析大黑汀水库间隙水氮磷分布的空间差异;采集沉积物无扰动柱样用静态培养法对其水土界面氮磷交换速率进行估算.结果表明:沉积物中TN、TP和TOC的含量分别在729~5894mg/kg、1312~2439mg/kg和0.5%~5.6%之间,沉积物中氨氮(NH4+-N)、硝酸盐氮(NO3--N)、亚硝酸盐氮(NO2--N)和活性磷(PO43--P)含量分别在0.6~202.9、34.4~168.3、0.1~0.3和16.1~75.2mg/kg之间,主要表现为下游含量高于上游,空间分布特征明显;沉积物C/N表明该水库有机质主要来源于水体内部,与人类网箱养殖活动有关.间隙水中NH4+-N和PO43--P浓度远高于上覆水,表明大黑汀水库间隙水具有向上覆水体扩散营养盐的潜力.在垂直方向上间隙水中NH4+-N浓度随深度的增加而变大,PO43--P浓度具有在0~4cm快速增加,之后表现出逐渐降低的趋势.静态释放结果表明,沉积物-水界面NH4+-N和PO43--P的交换通量分别为3.5~110.5mg/(m2·d)和0.1~1.6mg/(m2·d),NO3--N和NO2--N交换通量在-112.5~157.2mg/(m2·d)和0.04~0.94mg/(m2·d)之间.NH4+-N、NO3--N和PO43--P在下游表现出较高的释放速率.较高的沉积物内源负荷使得大黑汀水库沉积物具有较大的向上覆水释放营养盐的潜力,改善水库沉积物污染状况是治理大黑汀水库水体环境的必要之举.  相似文献   

19.
为探究生物膜处理系统对纳米ZnO的耐受性能,构建序批式生物膜反应器(SBBR)开展纳米ZnO对生物膜的胁迫试验.计算纳米ZnO在生物膜中的累积量,研究其对有机物、氮、磷的去除性能影响,判定SBBR对纳米ZnO的耐受阈值.通过测定生物量、微生物活性及群落结构变化,分析微生物群落对纳米ZnO的响应.结果表明:低浓度(1~10mg/L)纳米ZnO对COD、NH4+-N、溶解性磷(SOP)去除无显著影响,但5mg/L纳米ZnO对微生物代谢速率和生物活性产生促进作用.纳米ZnO浓度逐增至50mg/L,对生物量、微生物活性抑制作用增强,COD、NH4+-N、SOP去除率分别下降26.45%、57.83%和43.50%.纳米ZnO的胁迫对SBBR中COD去除性能影响最小,对NH4+-N影响较大.COD所指示SBBR的纳米ZnO耐受阈值为911.49mg,而NH4+-N、SOP所指示的耐受阈值为579.83mg.纳米ZnO的胁迫降低了系统中微生物群落的多样性,改变了群落结构组成,Proteobacteria和Chlorofiexi相对丰度由21.09%和7.03%分别降至8.00%和2.60%,致使NH4+-N去除受到显著抑制;Patescibacteria丰度由9.33%突增至56.64%,为有机物的去除起到至关重要的作用.污染物去除性能及微生物活性表明,SBBR生物膜系统对纳米ZnO的耐受性强于活性污泥法.  相似文献   

20.
考察了进水中NaHCO3投加量对废铁屑耦合厌氧氨氧化系统脱氮效能的影响.结果表明,NaHCO3投加量由250mg/L逐渐减少至125mg/L,常规厌氧氨氧化系统(R1)TN去除率下降至65%以下,污泥比活性下降约16%,而废铁屑(10g)耦合厌氧氨氧化系统(R2和R3)TN去除率提升至76.9%~82.2%,并且污泥比活性比R1高39.5%~51.4%;NaHCO3投加量的减少同时造成R1中ΔNO3--N/ΔNH4+-N比逐渐升高至0.34,而R2和R3中ΔNO3--N/ΔNH4+-N比低至0.2~0.21.进水中无机碳源(IC)不足(而非pH值或碱度)是导致R1脱氮效能恶化的主要原因,废铁屑耦合厌氧氨氧化系统可以有效应对无机碳源不足产生的不利影响并提升系统的脱氮效能.此外,在无机碳源不足(IC/TN=0.04)的条件下,废铁屑与厌氧氨氧化直接耦合系统(R2)比间接耦合系统(R3)具有更高的脱氮效能、污泥比活性以及NO3--N还原能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号