首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
一种新型生物膜法除磷工艺中聚磷菌的富集培养过程   总被引:1,自引:1,他引:0  
采用挂式尼龙作为生物载体的新型生物膜反应器处理合成废水,探讨短时间内在该常规生物膜上富集培养高浓度聚磷菌的可行性,并从反应器运行效率、除磷速率以及聚磷菌的富集状态等方面进行验证.反应器启动运行10 d后,好氧阶段正磷酸盐去除率稳定在95%以上,COD出水浓度均在50 mg·L~(-1)以下,并在该处理水平稳定运行了50 d.运行培养48 d后,吸磷及释磷速率由相同的3.4 mg·(L·h)-1分别提高到8 mg·(L·h)-1和6 mg·(L·h)-1,好氧和厌氧周期由相同的6 h分别缩短到2 h和3 h.运行培养50 d经荧光原位杂交法(FISH)测定,污泥中聚磷菌的丰度从原泥的48.96%提高到70%,杂交图中的聚磷菌以大块团聚态出现,由直接显微镜法测得生物膜厚度约为28.9μm,证明生物膜上聚磷菌群已处于动力学增长末期即生物膜已经成熟.经过50 d的强化培养,能够在常规尼龙填料上富集占总菌70%的高浓度聚磷菌,使得本反应器能高效去除污水中的磷与有机物.  相似文献   

2.
不同碳源对EBPR启动期聚磷菌的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
杨敏  卢龙  冯涌  张强 《环境工程》2013,31(1):39-42
以实验室序批式反应器(SBR)为强化生物除磷工艺(EBPR)载体,接种具有初步除磷功能的污泥后,以乙酸∶丙酸=1∶1(按各自折算的COD计)为混合碳源(以下简称混酸),厌氧初始pH 7.6±0.1,富集聚磷菌(PAO)。启动30 d后,EBPR反应器中为PAO和聚糖菌(GAO)的混合菌属,此时从反应器中取泥样进行批式试验,分别考察乙酸、丙酸及混酸对聚磷菌的富集和厌氧释磷的影响。结果表明:在EBPR启动期内,乙酸作为单一碳源时释磷量最大,但混酸碳源释磷效率最高,最有利于PAO富集;丙酸作为单一碳源时降解率最大而释磷量最小,不适合EBPR启动期的PAO富集。  相似文献   

3.
强化生物除磷体系中反硝化聚磷菌的选择与富集   总被引:40,自引:0,他引:40  
采用SBR反应器 ,对以硝酸盐作为电子受体的反硝化聚磷菌的选择和富集作了研究 .结果表明 ,反硝化聚磷菌存在于传统的强化生物除磷体系之中 .经过 3个阶段的选择和富集 ,反硝化聚磷菌在聚磷菌中的比例从 15 %上升到 73% .稳定运行的强化反硝化生物除磷体系具有良好的强化生物除磷和反硝化脱氮性能 ,缺氧结束时体系中磷浓度小于 1mg L ,除磷和脱氮效率分别大于 94 %和 95 % .  相似文献   

4.
聚磷菌在不同碳源下的反硝化研究   总被引:2,自引:1,他引:1  
利用SBR系统对聚磷菌进行了培养,并通过荧光原位杂交手段检测了系统中聚磷菌Candidatus Accumulibacter phosphatis的富集程度.聚磷菌也是一种普通异养菌,为了研究它的反硝化能力,排除了聚磷菌的正常释磷和吸磷过程,仅考察在不同碳源下反硝化性能.结果表明,乙酸和PHB都能成为聚磷菌反硝化的电子供体.当以乙酸为外在单一碳源时,其反硝化速率和PHB生成速率与起始硝酸盐浓度无关,但是当起始状态硝酸盐浓度越高时,消耗单位乙酸生成的PHB和硝酸盐还原量越小.以PHB为内在碳源和能源时,聚磷菌的反硝化速率呈现对于基质(硝酸盐)的零级动力学反应,比反硝化速率为0.973 3mg/(g.h),此外PHB平均比消耗速率为(以PHB计)2.462 6 mg/(g.h).  相似文献   

5.
聚磷生物膜的快速启动及微生物特性研究   总被引:2,自引:0,他引:2  
章豪  高碧霄  潘杨  冯鑫 《环境科学学报》2019,39(10):3317-3324
在同步去除并富集磷的基础上,探究采用前期不排泥、后期排泥的挂膜方式对聚磷生物膜反应器的运行效能、微生物特征及群落结构的影响.结果表明,经过驯化运行,聚磷生物膜的蓄磷能力明显提升.在挂膜阶段,生物膜厚度及EPS含量出现一定程度的增长;PN/PS上升至3.12,PN/PS比值增加有利于微生物粘附在填料上.在好氧出水达标的情况下,富集液中磷酸盐浓度提升至89.5 mg·L~(-1),达到了鸟粪石回收标准.高通量测序结果表明,经过富集培养,微生物群落多样性呈下降趋势,群落组成变化明显.优势菌门为变形菌门(Proteobacteria),其丰度从33.6%增长至75.3%;反应器中的聚磷菌属丰度明显增加,从11.8%上升至23.2%,红环菌属(Rhodocyclaceae)、UKL 13-1为反应器中的优势聚磷菌.  相似文献   

6.
AOA-SBR系统运行效能及高效聚磷菌的特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为获得聚磷能力突出且抗逆性强的菌株,进一步扩大生物除磷的应用范围,在实验室条件下完成AOA-SBR反应器的启动及运行,基于Illumina Miseq高通量测序技术对反应器各运行阶段样品中的细菌群落结构进行解析,从稳定运行的SBR反应器中分离得到聚磷菌,分别进行菌株的鉴定及其生长聚磷特性研究.结果表明:①反应器的启动及运行后期,各项出水水质指标均达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级A水平,系统的除磷率稳定在95%以上.②反应器对于除磷微生物的定向富集作用较强,变形菌门中的不动杆菌属为优势菌群.③共分离得到5株高效聚磷菌,暂命名为LXP1~LXP5,经鉴定分别为假单孢菌属(Pseudomonas)、不动杆菌属(Acinetobacter)、红球菌属(Rhodococcus)、大头茶属(Gordonia)及脂肪杆菌属(Pimelobacter).④LXP1~LXP5都具有典型的生长曲线和较短的生长周期,生长周期范围为24~36 h;各菌株在好氧条件下的吸磷量均在10 mg/L以上,最大可达30 mg/L.研究显示,实验室条件下AOA-SBR反应器的启动及运行可较好地实现对活性污泥中的除磷微生物定向富集的目的,该试验分离得到5株高效聚磷菌并经鉴定分属5种不同的菌属范畴,其中Rhodococcus、Gordonia及Pimelobacter的菌株为近年来鲜有的从活性污泥中筛选得到的具有较好聚磷特性的菌株.   相似文献   

7.
生物除磷系统的聚磷微生物种群及其检测方法   总被引:1,自引:0,他引:1  
总结了强化生物除磷(EBPR)系统中的聚磷菌微生物学的研究成果,介绍了聚磷菌所涉及主要菌群的菌属分类情况及其生物特性,阐述了EBPR系统内聚磷菌微生物学研究的各种分离鉴定技术的特点,包括传统的微生物纯培养技术、染色与光学显微镜技术,现代分子及其扩展技术及组合技术等,并分析了各分子生物技术的应用情况。重点介绍了以Accumulibacter为主的聚磷菌形态学和代谢特性方面取得的研究进展,并对今后聚磷菌微生物学的研究和发展方向进行了论述。  相似文献   

8.
序批式膜生物反应器中反硝化聚磷菌的富集   总被引:6,自引:1,他引:5  
采用序批式膜生物反应器(SBMBR)对以硝酸盐作为电子受体的反硝化聚磷菌的富集进行了研究.结果表明,经过厌氧-好氧和厌氧-缺氧-好氧2个阶段的富集,反硝化聚磷菌占全部聚磷菌的比例从19.4%上升到69.6%,每周期缺氧段投加硝酸盐氮120 mg时,SBMBR系统运行最为稳定.稳定运行的SBMBR反硝化强化除磷体系具有良好的强化除磷和反硝化脱氮性能,缺氧段脱氮和除磷效率分别达到100%和84%,膜出水总磷浓度平均低于0.5mg/L,系统除磷率达到96.1%.此外,氨氮去除率保持在92.2%,氨氮被去除的同时并没有发现亚硝酸盐氮和硝酸盐氮的明显积累.  相似文献   

9.
磷回收对厌氧/好氧交替式生物滤池蓄磷/除磷的影响   总被引:1,自引:1,他引:0  
张顺  田晴  汤曼琳  李方 《环境科学》2014,35(3):979-986
为能提高生物除磷系统的除磷/回收磷效率,研究采用厌氧/好氧交替式生物滤池(AABF)处理低碳磷比废水,观察利用周期性扩增进水碳源进行磷回收时,生物滤池除磷效率及生物膜内微生物特性的变化.通过分析生物滤池除磷效率变化,生物膜多聚物染色、扫描电镜(SEM)观察以及荧光原位杂交(FISH)技术分析生物滤池系统实施周期性磷回收对生物膜内微生物菌群形态与组成的影响.结果发现,生物滤池在先后经历3次生物蓄磷-磷回收(PB-PR)的运行操作过程中,生物滤池除磷效率分别由磷回收前的60.3%、82.9%、86.6%提高到磷回收后的87.2%、91.2%、93.5%;生物滤池生物膜内优势菌群形态逐渐由大球菌演变为小球菌、杆菌与丝状菌;经过连续3个周期的PB-PR操作,生物滤池底部生物膜中聚磷菌所占比例由43%提高至70%;聚磷菌群在生物膜内混合菌群中的比例随着上流式生物滤池高度的增加而不断提高.结果表明,采用周期性的碳源扩增与回收磷的操作,可以提高生物滤池除磷效率;引起生物滤池生物膜内微生物菌群形态与组成发生变化,促进聚磷菌成为优势菌群.  相似文献   

10.
聚磷菌(PAOs)是强化生物除磷工艺中发挥除磷作用的主要功能微生物,其代谢行为决定了除磷系统的稳定性及最终除磷效果.为了适应外界环境变化,聚磷菌会发生由聚磷代谢模式向聚糖代谢模式的代谢迁移.本文阐述了PAOs代谢迁移的机理,对可能引起聚磷菌代谢迁移的环境因子如进水磷浓度、金属离子、p H值、温度等进行了总结,并分类叙述了不同类型的PAOs种类发生代谢迁移的差异化原因,以期为PAOs在强化生物除磷工艺中的应用提供参考.  相似文献   

11.
作为生物除磷系统中的主要功能菌,对聚磷菌菌群进行定性、定量分析是深入理解生物除磷系统、提高除磷效率的必然趋势。目前常用于检测聚磷菌的方法主要有生物化学法和分子生物学法,文章主要阐述了荧光原位杂交技术、聚合酶链反应技术、变性梯度凝胶电泳技术以及多技术结合使用的特点及应用情况,并在此基础上提出了改进措施以及聚磷菌检测技术的发展方向。  相似文献   

12.
采用脉冲进水缺好氧交替工艺(SAOSBR)处理低C/N实际生活污水,考察了短程脱氮对于低碳源生活污水同步脱氮除磷效果的强化作用,并分析了短程脱氮强化生物除磷的机理.结果表明,通过短时的饥饿处理配合缺好氧交替的运行方式实现了系统的短程硝化,亚硝酸盐积累率稳定在95%以上.短程的实现还强化了系统的同步脱氮除磷效果,总氮和磷的平均去除率相比于全程脱氮过程分别提高了约6%和36%.分析表明短程强化生物除磷的原因主要是由于残留的NO2-对聚磷菌厌氧释磷的影响较小.静态试验也证实,在碳源不足的条件下,以NO2-为电子受体的反硝化作用相比于NO3-可以减弱反硝化菌与聚磷菌之间的碳源竞争,从而提高聚磷菌的厌氧释磷量和聚羟基烷酸(PHA)的合成量.因此,在处理低C/N生活污水时,短程脱氮的实现更有利于系统的生物除磷.  相似文献   

13.
胞外聚合物EPS在废水生物除磷中的作用   总被引:20,自引:6,他引:14  
对EPS在废水生物除磷中的作用机理进行系统研究,探讨和完善生物除磷机理.试验结果表明,在生物除磷系统中,EPS贮存了部分磷,在生物除磷中起着重要的作用.在厌氧.好氧交替过程中.EPS中磷含量呈厌氧减少、好氧增加的周期性变化;污泥中的磷有82%左右被聚磷菌吸收,另外18%左右的磷聚集在EPS中;一个运行周期中基质所减少的磷84.3%被聚磷菌过量吸收,15.7%被贮存于EPS中;EPS对磷的去除能力与EPS的含量正相关.此外,泥龄对EPS影响较大,对EPS在生物除磷中的作用影响显著,泥龄越长,EPS含量越高,EPS中所贮存的磷含量越高.而磷负荷对EPS除磷影响不显著.  相似文献   

14.
为研究同步短程硝化内源反硝化除磷(SPNED-PR)系统的脱氮除磷特性及系统内聚磷菌(PAOs)和聚糖菌(GAOs)在氮磷去除的贡献和竞争关系,本研究以实际低C/N比(4左右)生活污水为处理对象,考察了不同浓度的溶解氧(DO)(0.5~2.0mg/L)、NO2--N(4.7~39.9mg/L)和NO3--N(5.0~40.0mg/L)对延时厌氧(150min)/低氧(180min,溶解氧0.5~0.7mg/L)运行的SPNED-PR系统氮磷去除特性和底物转化特性的影响.结果表明,DO浓度均不影响PAOs和GAOs的好氧代谢活性,且两者之间几乎不存在DO竞争.不同NO2--N浓度条件下,GAOs较PAOs更具竞争优势,NO2--N主要是通过GAOs去除的(约占58%);且GAOs所具有的高内源反硝化活性和亚硝耐受力,减弱了高NO2--N浓度(26.2~39.9mg/L)对PAOs反硝化吸磷的抑制,保证了系统的脱氮除磷性能.不同NO3--N浓度条件下,PAOs较GAOs处于竞争优势,其在NO3--N去除中的贡献比例达61.2%.此外,SPNED-PR系统的PURDO > PURnitrate > PURnitrite,PAOs对DO的优先利用保证了低氧条件下系统的高效除磷,且GAOs的内源短程反硝化特性保证了系统的高效脱氮.  相似文献   

15.
Increasing attention has been paid to phosphate-accumulating organisms(PAOs)for their important role in biological phosphorus removal.In this study,microbial communities of PAOs cultivated under different carbon sources(sewage,glucose,and sodium acetate) were investigated and compared through culture-dependent and culture-independent methods,respectively.The results obtained using denaturing gradient gel electrophoresis(DGGE)of polymerase chain reaction-amplified 16S rDNA fragments revealed that the diversity of bacteria in a sewage-fed reactor(1#)was much higher than in a glucose-fed one(2#)and a sodium acetate-fed one(3#);there were common PAOs in three reactors fed by different carbon sources.Five strains were separated from three systems by using a phosphate- rich medium;they were from common bacteria isolated and three isolates could not be found in DGGE profile at all.Two isolates had good phosphorus removal ability.When the microbial diversity was studied,the molecular biological method was better than the culture-dependent one.When phosphorus removal characteristics were investigated,culture-dependent approach was more effective. Thus a combination of two methods is necessary to have a comprehensive view of PAOs.  相似文献   

16.
SBR后置缺氧反硝化除磷的启动及去除性能   总被引:1,自引:0,他引:1  
为实现对氮磷的高效同步去除,采用将缺氧后置的SBR工艺,以生活污水为处理对象,考察反硝化除磷工艺的启动与运行效果.结果表明,先通过短污泥龄(SRT)驯化富集聚磷菌(PAOs),再延长污泥龄并引入缺氧段,39d即可实现反硝化除磷工艺的启动,COD、TP、NH4+-N、TN去除率分别为92.9%、98.4%、100%和87.6%.进水COD与TN比(C/N)对系统氮磷去除有一定影响:C/N短暂的降低幅度不超过17.65%时,氮磷去除效率并没有明显变化;当超过33.3%时,脱氮除磷性能下降,但伴随着运行时间的延长,出水COD浓度减少,反硝化除磷菌(DPAOs)在PAOs比例也会提升,这在一定程度上弥补了DPAOs反硝化脱氮效率的下降.周期实验表明,pH值与DO可以作为厌氧释磷结束与周期结束的实时控制参数,大大缩短反应时间,降低曝气能耗.  相似文献   

17.
为了直接识别出污泥中的聚磷细菌和其种属,本研究采用4',6-二脒基-2-苯基吲哚(DAPI)染色和流式细胞荧光分选技术(FACS)对以淀粉为唯一碳源的缺氧/好氧序批式活性污泥(SBR)系统(R1)的缺氧末期和好氧末期以及以乙酸盐为唯一碳源的厌氧/好氧SBR系统(R2)的好氧末期污泥的聚磷细菌进行了原位分选,并通过16S rRNA高通量测序技术鉴定了分选后细菌的种属.结果表明,在R1中,缺氧期和好氧期均进行生物除磷,且缺氧期吸磷量大于好氧期. R2中发生着厌氧期释磷、好氧期大量吸磷的传统生物除磷.利用FACS在R1和R2污泥中均分选得到106个相对纯度为85%的具有聚磷颗粒的细菌.测序结果表明,在R1系统中,缺氧段优势的聚磷菌属为Halomonas(37.75%)、unclassified Brucellaceae(14.15%)、Pseudomonas(6.49%)、unclassified Chlamydiales(0.027%)和Sphingopyxis(0.007%);好氧段优势聚磷菌属为Halomonas(19.72%)、unclassified Brucellaceae(14.62%)、Pseudomonas(14.28%)、unclassified Comamonadaceae(0.046%)、unclassified Acidobacteria Gp3(0.036%)和Ferruginibacter(0.026%).R1系统中unclassified ChlamydialesSphingopyxis仅仅在缺氧条件下具有聚磷功能,而unclassified Comamonadaceae、unclassified Acidobacteria Gp3和Ferruginibacter仅在好氧条件下才具有聚磷功能.在R2系统中,优势聚磷菌群为Dechloromonas(11.06%)、unclassified Anaerolineaceae(9.29%)、unclassified Bacteroidetes(7.44%)、unclassified Gammaproteobacteria(7.34%)以及Acinetobacter(0.31%).这意味着在新型的除磷系统(R1)中,参与除磷过程的细菌包括好氧,缺氧和兼性缺氧聚磷细菌,而在传统的除磷系统(R2)中,参与除磷过程的细菌仅为好氧聚磷细菌.  相似文献   

18.
基于聚糖菌和聚磷菌竞争的代谢模型及影响因素   总被引:5,自引:0,他引:5  
聚糖菌的富集已成为造成EBPR强化生物除磷系统非稳定运行的重要因素之一.本文基于活性污泥数学模型ASM.2D的生物除磷代谢模型,围绕化学计量学和动力学阐述了聚磷菌PAOs胞内糖原的代谢途径以及聚糖菌GAOs在厌氧和好氧条件下的代谢模型,揭示了2类微生物的竞争本质.同时,对比分析了影响代谢模型化学计量学参数的若干因子,如碳源类型、温度、pH条件和污泥龄SRT等;结果发现,这些因素对PAOs和GAOs的代谢模型系数具有重要的影响作用,并进而决定着2类微生物的竞争优势.此外,针对目前对两类微生物的竞争主要集中于厌氧代谢的现状,提出今后的研究重点应放在好氧/缺氧机理方面.  相似文献   

19.
MUCT工艺全程硝化和短程硝化模式下反硝化除磷研究   总被引:4,自引:2,他引:2  
曾薇  王向东  张立东  李博晓  彭永臻 《环境科学》2012,33(10):3513-3521
采用MUCT工艺处理低C/N比实际生活污水,研究在全程硝化及短程硝化模式下系统的反硝化除磷性能.MUCT反应器在常温下运行180 d,结果表明,采用低DO和短水力停留时间(HRT)实现了短程硝化,亚硝酸盐积累率达到70%以上.系统表现出较好的反硝化除磷性能,短程硝化期间磷的去除率和反硝化除磷率分别为90%和91%,全程硝化期间磷的去除率和反硝化除磷率分别为60%和88%.虽然短程硝化模式下磷的去除效果明显优于全程硝化模式,但荧光原位杂交(FISH)试验结果表明,2种模式下污泥中PAOs占总菌群的比例基本相同,平均为37%.COD去除效果稳定,试验期间出水COD均低于50 mg.L-1.不同硝化模式下污泥的批次试验表明:短程硝化期间,以NO2--N作为电子受体为主的反硝化除磷菌占总聚磷菌的比例和全程硝化期间以NO3--N作为电子受体为主的反硝化除磷菌的比例相比没有明显变化,平均为38%;与全程硝化时期相比,短程硝化阶段对有限碳源的利用率更高,磷的去除效果更好.短程硝化模式下的反硝化除磷更有利于低碳源污水的处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号