首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Intervertebral Neck Injury Criterion (IV-NIC) is based on the hypothesis that dynamic three-dimensional intervertebral motion beyond physiological limits may cause multiplanar injury of cervical spine soft tissues. Goals of this study, using a biofidelic whole human cervical spine model with muscle force replication and surrogate head in simulated side impacts, were to correlate IV-NIC with multiplanar injury and determine IV-NIC injury threshold for each intervertebral level. METHODS: Using a bench-top apparatus, side impacts were simulated at 3.5, 5, 6.5, and 8 g horizontal accelerations of the T1 vertebra. Pre- and post-impact flexibility testing in three-motion planes measured the soft tissue injury, i.e., significant increase (p < 0.05) in neutral zone (NZ) or range of motion (RoM) at any intervertebral level, above corresponding physiological limit. RESULTS: IV-NIC in left lateral bending correlated well with total lateral bending RoM (R = 0.61, P < 0.001) and NZ (R = 0.55, P < 0.001). Additionally, the same IV-NIC correlated well with left axial rotation RoM (R = 0.50, P < 0.001). IV-NIC injury thresholds (95% confidence limits) varied among intervertebral levels and ranged between 1.5 (0.6-2.4) at C3-C4 and 4.0 (2.4-5.7) at C7-T1. IV-NIC injury threshold times were attained beginning at 84.5 ms following impact. CONCLUSIONS: Present results suggest that IV-NIC is an effective tool for determining multiplanar soft tissue neck injuries by identifying the intervertebral level, mode, time, and severity of injury.  相似文献   

2.
OBJECTIVE: To quantify the dynamic loads and intervertebral motions throughout the cervical spine during simulated rear impacts. METHODS: Using a biofidelic whole cervical spine model with muscle force replication and surrogate head and bench-top mini-sled, impacts were simulated at 3.5, 5, 6.5, and 8 g horizontal accelerations of the T1 vertebra. Inverse dynamics was used to calculate the dynamic cervical spine loads at the centers of mass of the head and vertebrae (C1-T1). The average peak loads and intervertebral motions were statistically compared (P < 0.05) throughout the cervical spine. RESULTS: Load and motion peaks generally increased with increasing impact acceleration. The average extension moment peaks at the lower cervical spine, reaching 40.7 Nm at C7-T1, significantly exceeded the moment peaks at the upper and middle cervical spine. The highest average axial tension peak of 276.9 N was observed at the head, significantly greater than at C4 through T1. The average axial compression peaks, reaching 223.2 N at C5, were significantly greater at C4 through T1, as compared to head-C1. The highest average posterior shear force peak of 269.5 N was observed at T1. CONCLUSION: During whiplash, the cervical spine is subjected to not only bending moments, but also axial and shear forces. These combined loads caused both intervertebral rotations and translations.  相似文献   

3.
A protocol has been proposed for testing seats for whiplash protection, however injury criteria have not yet been chosen. Assuming that whiplash symptoms arise from non-physiological motions of vertebral segments, we determined the ability of proposed criteria to predict peak individual vertebral displacements. Twenty-eight volunteers were subjected to rear impacts while seated in a car seat with head restraint, mounted onto a sled. Accelerometers were used to record head and torso accelerations. The volunteer data was used as a basis for testing post-mortem human specimens (PMHS). The seat was replaced by a platform onto which was mounted each of 11 cervico-thoracic spines. An instrumented headform was mounted to the upper end of the spine. The head restraint, head-to-restraint geometry, sled, and impact pulse remained the same. Head and T1 accelerations were measured and individual vertebral sagittal (XZ) plane rotations and translations were obtained from high speed video. Proposed injury criteria (NIC, Nkm, Nte, Nd) were tested for their ability to predict average, total, and peak intervertebral displacements. PMHS specimens had chest and head X (horizontal) and Z (vertical) linear accelerations similar to volunteers whose heads hit the head restraint. The best predictors were: Nd shear and peak intervertebral posterior translation (r(2) = 0.80), Nd extension and peak extension angle (r(2) = 0.70), and Nd distraction and peak distraction (r(2) = 0.51). Therefore consideration should be given to a displacement based injury criteria such as Nd in assessment of whiplash protection devices.  相似文献   

4.
Objective: The objective of this study was to investigate whether the 5-point harness or the impact shield child restraint system (CRS) or both have the potential to cause chest injuries to children. This is determined by examining whether the loading to the chest reaches the internal organ injury threshold for children.

Method: The chest injury risk to a child occupant in a CRS was investigated using Q3 dummy tests, finite element (FE) simulations (Q3 dummy and human models), and animal tests. The investigation was done for 2 types of CRSs (i.e., the impact shield CRS and 5-point harness CRS) based on the UN R44 dynamic test specifications.

Results: The tests using a Q3 dummy indicated that although the chest deflection of the dummy in the impact shield CRS was large, it was less than the injury threshold (40 mm). Computational biomechanics simulations (using finite element FE analysis) showed that the Q3 dummy's chest is loaded by the shield and deforms substantially under this load. To clarify whether chest injuries due to chest compression can occur with an impact shield or with the 5-point harness CRS, 7 experiments were performed using Tibetan miniature pigs with weights ranging from 9.7 to 13 kg. Severe chest and abdominal injuries (lung contusion, coronary artery laceration, liver laceration) were found in the tests using the impact shield CRS. No chest injuries were present when using the 5-point harness CRS.

Conclusion: When using the impact shield CRS, the chest deformed substantially in dummy tests and FE simulations, and chest and abdominal injuries were observed in pig tests. It is possible that these chest injuries could also occur to child occupants sitting in the impact shield CRS.  相似文献   


5.
OBJECTIVE: The objective is to establish a basis for motor vehicle test requirements that measure component contributions to Whiplash Associated Disorders (WAD). METHODS: Selected vehicle design features are evaluated with regard to their relative contributions to WAD measures. The motion of the occupant cervical spine associated with WAD is divided into four phases: retraction, extension, rebound, and protraction. Injury measures from the literature (NIC, extension moment, N(km), and flexion moment) represent the injury potential during each of these phases. Four vehicle design factors that affect WAD motion (vehicle stiffness, seat stiffness, head restraint height and head restraint backset) were evaluated for their contributions to the injury measures. A detailed 50th percentile male model with a biofidelic neck was used in a 100-run Monte Carlo analysis of a rear impact, varying the design factors across the values documented in the literature. Total energy was held constant and Delta V was 10 kph. RESULTS: Vehicle stiffness has a strong influence on the retraction (70%), rebound (43%), and protraction (47%) phases. Headrest backset demonstrates a strong influence on the extension (49%) and rebound (39%) phases. CONCLUSIONS: For WAD protection rating, the vehicle should be viewed as a system whereby the complex interactions among the vehicle, seat, and occupant characteristics all contribute to the WAD potential.  相似文献   

6.
Objective: This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics.

Results: The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had ?1,696 N anterior lumbar shear force and ?205.2 Nm extension moment. There was ?1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had ?500 N shear force and ?49.7 Nm extension moment. There was ?839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had similar peak lumbar responses; however, they occurred later due to the forward lean of the dummy.

Conclusions: The design and performance of seats have significantly changed over the past 20 years. Modern seats use a perimeter frame allowing the occupant to pocket into the seatback. Higher and more forward head restraints allow a stronger frame because the head, neck, and torso are more uniformly supported with the seat more upright in severe rear impacts. The overall effect has been a reduction in thoracic and lumbar loads and risks for injury.  相似文献   

7.
OBJECTIVE: To determine whether injuries to sub-optimally restrained child occupants in real-world crashes were likely to be preventable by alternative restraint usage practices and to assess the usefulness of crash reconstruction for exploring injury mechanisms in child occupants. METHODS: Real-world crashes in which child occupants sustained significant injuries were reconstructed on a laboratory crash sled using the Hybrid III family of child dummies. Alternative restraint scenarios and cases in which children were not seriously injured were also simulated to compare dummy kinematics and dynamic responses in optimal restraint configurations. RESULTS: Restraint misuse was associated with greater motion of the dummy torso and head during crashes, often allowing contact between the child and the vehicle interior, resulting in injury. Poor pre-crash posture for a child inappropriately restrained in an adult belt appeared to worsen the geometry of the sash (shoulder) belt, resulting in a cervical injury due to direct interaction with the belt. Dynamic dummy data did not appear to discriminate between injury and non-injury cases. CONCLUSIONS: Dummy kinematics suggest that injuries in which inappropriate use and misuse were a factor were less likely if the most appropriate restraint was used correctly. Adequately controlling the head and upper body of the child occupant was seen to prevent undesirable interactions with the vehicle interior and restraint system, which were associated with injury in the real world. Neck forces and moments and injury criteria calculated from these did not predict injury reliably.  相似文献   

8.
Seat performance in retaining an occupant, transferring energy, and controlling neck responses is often questioned after severe rear crashes when fatal or disabling injury occur. It is argued that a stiffer seat would have improved occupant kinematics. However, there are many factors in occupant interactions with the seat. This study evaluates four different seat types in 26 and 32 mph (42 and 51 km/h), rear crash delta Vs. Two seats were yielding with k = 20 kN/m occupant load per displacement. One represented a 1970s yielding seat with j = 3.4 degrees /kN frame rotation per occupant load, and 3 kN maximum load (660 Nm moment), and the other a high retention seat phased into production since 1997 with j = 1.4 degrees /kN, and 10 kN maximum load (2200 Nm). Two seats were stiff with k = 40 kN/m. One represented a 1990s foreign benchmark with j = 1.8 degrees /kN and a 7.7 kN maximum load (1700 Nm), and the other an all belts to seat (ABTS) with j = 1.0 degrees /kN and 20 kN maximum load (4400 Nm). The crash was a constant acceleration of 11.8 g, or 14.5 g for 100 ms. Occupant interactions with the seat were modeled using a torso mass, flexible neck and head mass. By analysis of the equations of motion, the initial change in seatback angle (Deltatheta) is proportional to jk(y - x), the product jk and the differential motion between the vehicle (seat cushion) and occupant. The transition from 1970s-80s yielding seats to stronger seats of the 1990s involved an increase in k stiffness; however, the jk property did not change as frame structures became stronger. The yielding seats of the 1970s had jk = 68 degrees /m, while the stiff foreign benchmark seat had jk = 72 degrees /m. The foreign benchmark rotated about the same as the 1970s seat up to 50 ms in the severe rear crashes. While it was substantially stronger, it produced higher loads on the occupant, and the higher loads increased seatback rotations and neck responses. The ABTS seat had the lowest rotations but also caused high neck responses because of the greater loads on the torso. Neck displacement (d) is initially proportional to (k/m(T)) integral integral y, seat stiffness times the second integral of vehicle displacement divided by torso mass. As seat stiffness increases, head-torso acceleration, velocity, and neck displacement increase. This study shows that the jk seat property determines the initial seatback rotation in rear crashes. If a stronger seat has a higher stiffness, it rotates at higher loads on the occupant, reducing the overall benefit of the stronger frame, while increasing neck responses related to whiplash or neck extension prior to subsequent impacts. The aim of seat designs should be to reduce jk, provide pocketing of the pelvis, and give head-neck support for the best protection in severe rear crashes. For low-speed crashes, a low k is important to reduce early neck responses related to whiplash.  相似文献   

9.
Purpose: This is a study of the influence of an unbelted rear occupant on the risk of severe injury to the front seat occupant ahead of them in frontal crashes. It provides an update to earlier studies.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to belted drivers and front passengers in frontal crashes by the presence of a belted or unbelted passenger seated directly behind them or without a rear passenger. Frontal crashes were identified with GAD1 = F without rollover (rollover ≤ 0). Front and rear outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4+F was determined using the number of occupants with known injury status MAIS 0+F. Standard errors were determined.

Results: The risk for severe injury was 0.803 ± 0.263% for the driver with an unbelted left rear occupant and 0.100 ± 0.039% with a belted left rear occupant. The driver's risk was thus 8.01 times greater with an unbelted rear occupant than with a belted occupant (P <.001). With an unbelted right rear occupant behind the front passenger, the risk for severe injury was 0.277 ± 0.091% for the front passenger. The corresponding risk was 0.165 ± 0.075% when the right rear occupant was belted. The front passenger's risk was 1.68 times greater with an unbelted rear occupant behind them than a belted occupant (P <.001). The driver's risk for MAIS 4+F was highest when their seat was deformed forward. The risk was 9.94 times greater with an unbelted rear occupant than with a belted rear occupant when the driver's seat deformed forward. It was 13.4 ± 12.2% with an unbelted occupant behind them and 1.35 ± 0.95% with a belted occupant behind them.

Conclusions: Consistent with prior literature, seat belt use by a rear occupant significantly lowered the risk for severe injury to belted occupants seated in front of them. The reduction was greater for drivers than for front passengers. It was 87.5% for the driver and 40.6% for the front passenger. These results emphasize the need for belt reminders in all seating positions.  相似文献   


10.
Seat performance in retaining an occupant, transferring energy, and controlling neck responses is often questioned after severe rear crashes when fatal or disabling injury occur. It is argued that a stiffer seat would have improved occupant kinematics. However, there are many factors in occupant interactions with the seat. This study evaluates four different seat types in 26 and 32 mph (42 and 51 km/h), rear crash delta Vs. Two seats were yielding with k = 20 kN/m occupant load per displacement. One represented a 1970s yielding seat with j = 3.4°/kN frame rotation per occupant load, and 3 kN maximum load (660 Nm moment), and the other a high retention seat phased into production since 1997 with j = 1.4°/kN, and 10 kN maximum load (2200 Nm). Two seats were stiff with k = 40 kN/m. One represented a 1990s foreign benchmark with j = 1.8°/kN and a 7.7 kN maximum load (1700 Nm), and the other an all belts to seat (ABTS) with j = 1.0°/kN and 20 kN maximum load (4400 Nm). The crash was a constant acceleration of 11.8 g, or 14.5 g for 100 ms. Occupant interactions with the seat were modeled using a torso mass, flexible neck and head mass. By analysis of the equations of motion, the initial change in seatback angle (Δθ) is proportional to jk(y ? x), the product jk and the differential motion between the vehicle (seat cushion) and occupant. The transition from 1970s–80s yielding seats to stronger seats of the 1990s involved an increase in k stiffness; however, the jk property did not change as frame structures became stronger. The yielding seats of the 1970s had jk = 68°/m, while the stiff foreign benchmark seat had jk = 72°/m. The foreign benchmark rotated about the same as the 1970s seat up to 50 ms in the severe rear crashes. While it was substantially stronger, it produced higher loads on the occupant, and the higher loads increased seatback rotations and neck responses. The ABTS seat had the lowest rotations but also caused high neck responses because of the greater loads on the torso. Neck displacement (d) is initially proportional to (k/mT) ∫∫ y, seat stiffness times the second integral of vehicle displacement divided by torso mass. As seat stiffness increases, head-torso acceleration, velocity, and neck displacement increase. This study shows that the jk seat property determines the initial seatback rotation in rear crashes. If a stronger seat has a higher stiffness, it rotates at higher loads on the occupant, reducing the overall benefit of the stronger frame, while increasing neck responses related to whiplash or neck extension prior to subsequent impacts. The aim of seat designs should be to reduce jk, provide pocketing of the pelvis, and give head-neck support for the best protection in severe rear crashes. For low-speed crashes, a low k is important to reduce early neck responses related to whiplash.  相似文献   

11.
OBJECTIVE: Motor vehicle collision (MVC)-related spinal injury is a severe and often permanently disabling injury. In addition, strain injuries have been reported as a common outcome of MVCs. Although advances in automobile crashworthiness have reduced both fatalities and severe injuries, the impact of varying occupant restraint systems (seatbelts and airbags) on thoracolumbar spine injuries is unknown. This study examined the relationship between the occurrence of mild to severe cervical and thoracolumbar spine injury and occupant restraint systems among front seat occupants involved in frontal MVCs. METHODS: A retrospective cohort study was conducted among subjects obtained from the 1995-2004 National Automotive Sampling System. Cases were identified based on having sustained a spine injury of >/=1 on the Abbreviated Injury Scale (AIS), 1990 Revision. Risk risks (RRs) and 95% confidence intervals (CIs) were computed comparing occupant restraint systems with unrestrained occupants. RESULTS: We found an overall incidence of AIS1 cervical (11.8%) and thoracolumbar (3.7%) spinal injury. Seatbelt only restraints were associated with increased cervical AIS1 injury (RR = 1.40, 95% CI 1.04-1.88). However, seatbelt only restraints showed the greatest risk reduction for AIS2 spinal injuries. Airbag only restraints reduced thoracolumbar AIS1 injuries (RR = 0.29, 95% CI 0.08-1.04). Seatbelt combined with airbag use was protective for cervical AIS3+ injury overall (RR = 0.29, 95% CI 0.14-0.58), cervical neurological injury (RR = 0.19, 95% CI 0.05-0.81), and thoracolumbar AIS3+ injury overall (RR = 0.20, 95% CI 0.05-0.70). CONCLUSIONS: The results of this study suggest that seatbelts alone or in combination with an airbag increased the incidence of AIS1 spinal injuries, but provide protection against more severe injury to all regions of the spine. Airbag deployment without seatbelt use did not show increased protection relative to unrestrained occupants.  相似文献   

12.
Objective: This study compared biomechanical responses of a normally seated Hybrid III dummy on conventional and all belts to seat (ABTS) seats in 40.2 km/h (25 mph) rear sled tests. It determined the difference in performance with modern (≥2000 MY) seats compared to older (<2000 MY) seats and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position. The testing included 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS seats. The dummy was fully instrumented, including head accelerations, upper and lower neck 6-axis load cells, chest acceleration, thoracic and lumbar spine load cells, and pelvis accelerations. The peak responses were normalized by injury assessment reference values (IARVs) to assess injury risks. Statistical analysis was conducted using Student's t test. High-speed video documented occupant kinematics.

Results: Biomechanical responses were lower with modern (≥2000 MY) seats than older (<2000 MY) designs. The lower neck extension moment was 32.5 ± 9.7% of IARV in modern seats compared to 62.8 ± 31.6% in older seats (P =.01). Overall, there was a 34% reduction in the comparable biomechanical responses with modern seats. Biomechanical responses were lower with modern seats than ABTS seats. The lower neck extension moment was 41.4 ± 7.8% with all MY ABTS seats compared to 32.5 ± 9.7% in modern seats (P =.07). Overall, the ABTS seats had 13% higher biomechanical responses than the modern seats.

Conclusions: Modern (≥2000 MY) design seats have lower biomechanical responses in 40.2 km/h rear sled tests than older (<2000 MY) designs and ABTS designs. The improved performance is consistent with an increase in seat strength combined with improved occupant kinematics through pocketing of the occupant into the seatback, higher and more forward head restraint, and other design changes. The methods and data presented here provide a basis for standardized testing of seats. However, a complete understanding of seat safety requires consideration of out-of-position (OOP) occupants in high-speed impacts and consideration of the much more common, low-speed rear impacts.  相似文献   


13.
14.
Objective: Several studies have evaluated the correlation between U.S. or Euro New Car Assessment Program (NCAP) ratings and injury risk to front seat occupants, in particular driver injuries. Conversely, little is known about whether NCAP 5-star ratings predict real-world risk of injury to restrained rear seat occupants. The NHTSA has identified rear seat occupant protection as a specific area under consideration for improvements to its NCAP. In order to inform NHTSA's efforts, we examined how NCAP's current 5-star rating system predicts risk of moderate or greater injury among restrained rear seat occupants in real-world crashes.

Methods: We identified crash-involved vehicles, model year 2004–2013, in NASS-CDS (2003–2012) with known make and model and nonmissing occupant information. We manually matched these vehicles to their NCAP star ratings using data on make, model, model year, body type, and other identifying information. The resultant linked NASS-CDS and NCAP database was analyzed to examine associations between vehicle ratings and rear seat occupant injury risk; risk to front seat occupants was also estimated for comparison. Data were limited to restrained occupants and occupant injuries were defined as any injury with a maximum Abbreviated Injury Scale (AIS) score of 2 or greater.

Results: We linked 95% of vehicles in NASS-CDS to a specific vehicle in NCAP. The 18,218 vehicles represented an estimated 6 million vehicles with over 9 million occupants. Rear seat passengers accounted for 12.4% of restrained occupants. The risk of injury in all crashes for restrained rear seat occupants was lower in vehicles with a 5-star driver rating in frontal impact tests (1.4%) than with 4 or fewer stars (2.6%, P =.015); results were similar for the frontal impact passenger rating (1.3% vs. 2.4%, P =.024). Conversely, side impact driver and passenger crash tests were not associated with rear seat occupant injury risk (driver test: 1.7% for 5-star vs. 1.8% for 1–4 stars; passenger test: 1.6% for 5 stars vs 1.8% for 1–4 stars).

Conclusions: Current frontal impact test procedures provide some degree of discrimination in real-world rear seat injury risk among vehicles with 5 compared to fewer than 5 stars. However, there is no evidence that vehicles with a 5-star side impact passenger rating, which is the only crash test procedure to include an anthropomorphic test dummy (ATD) in the rear, demonstrate lower risks of injury in the rear than vehicles with fewer than 5 stars. These results support prioritizing modifications to the NCAP program that specifically evaluate rear seat injury risk to restrained occupants of all ages.  相似文献   

15.

Introduction

The objective of this study was to evaluate the circumstances leading to fall from equipment injuries in the mining industry.

Method

The 2006 and 2007 Mine Safety and Health Administration annual injury databases were utilized for this study whereby the injury narrative, nature of injury, body part injured, mine type, age at injury, and days lost were evaluated for each injury.

Results

The majority of injuries occurred at surface mining facilities (∼ 60%) with fractures and sprains/strains being the most common injuries occurring to the major joints of the body. Nearly 50% of injuries occurred during ingress/egress, predominately during egress, and approximately 25% of injuries occurred during maintenance tasks. The majority of injuries occurred in relation to large trucks, wheel loaders, dozers, and conveyors/belts. The severity of injury was independent of age and the median days lost was seven days; however, there was a large range in severity.

Impact on industry

From the data obtained in this study, several different research areas have been identified for future work, which include balance and stability control when descending ladders and equipment design for maintenance tasks.  相似文献   

16.
17.
Rear impact sled tests were conducted using 5th, 50th, and 95th percentile Hybrid III dummies to evaluate proposed injury criteria. Different head restraint height (750, 800 mm) and backset (0, 50, 100 mm) positions were used to determine axial and shear forces, bending moments, and injury criteria (NIC, N(ij), and N(km)). The time sequence to attain each parameter was also determined. Three events were identified in the response. Event I was coincident with the maximum rearward motion of the torso, Event II occurred at the time of the peak upper neck flexion moment, and Event III occurred at the time of maximum rearward motion of the head. Parameters such as backset, head restraint height, seat-head restraint interaction, and anthropometry affected impact responses. Head rotations increased with increasing backset and increasing head restraint height. However, N(ij) and N(km) did not exhibit such clear trends. The 50th percentile dummy responded with consistent injury criteria values (e.g., the magnitude of the injury criteria increased with backset increase or head restraint height decrease). However, the 5th and 95th percentile dummies did not demonstrate such trends. These findings underscore the need to include subject anthropometry in addition to seat and head restraint characteristics for better assessment of rear impact responses.  相似文献   

18.
Objective: We studied the correlation between airbag deployment and eye injuries using 2 different data sets.

Methods: The registry of the Finnish Road Accident (FRA) Investigation Teams was analyzed to study severe head- and eyewear-related injuries. All fatal passenger car or van accidents that occurred during the years 2009–2012 (4 years) were included (n = 734). Cases in which the driver's front airbag was deployed were subjected to analysis (n = 409). To determine the proportion of minor, potentially airbag-related eye injuries, the results were compared to the data for all new eye injury patients (n = 1,151) recorded at the Emergency Clinic of the Helsinki University Eye Hospital (HUEH) during one year, from May 1, 2011, to April 30, 2012.

Results: In the FRA data set, the unbelted drivers showed a significantly higher risk of death (odds ratio [OR] = 5.89, 95% confidence interval [CI], 3.33–10.9, P = 2.6E-12) or of sustaining head injuries (OR = 2.50, 95% CI, 1.59–3.97, P = 3.8E-5). Only 4 of the 1,151 HUEH patients were involved in a passenger car accident. In one of the crashes, the airbag operated, and the belted driver received 2 sutured eye lid wounds and showed conjunctival sugillation. No permanent eye injuries were recorded during the follow-up. The calculated annual airbag-related eye injury incidence was less than 1/1,000,000 people, 4/100,000 accidents, and 4/10,000 injured occupants.

Conclusions: Airbag-related eye injuries occurred very rarely in car accidents in cases where the occupant survived and the restraint system was appropriately used. Spectacle use did not appear to increase the risk of eye injury in restrained occupants.  相似文献   


19.
Objective: The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model.

Methods: Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion.

Results: The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment.

Conclusions: The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.  相似文献   


20.
OBJECTIVES: The majority of motor vehicle occupants who were killed or hospitalized in crashes in Kentucky in 2000-2001 occupied vehicles that were severely damaged in the crash. Even so, overall only a small percentage of all severely damaged vehicle occupants were killed or hospitalized. The purpose was to identify occupant, vehicle, crash, and roadway/environmental factors that were associated with increased risk of severe injury in crashes where the occupant's vehicle was severely damaged. METHODS: This study probabilistically linked Kentucky's statewide motor vehicle crash and inpatient hospital discharge data files for 2000 and 2001, and selected cases representing occupants of vehicles that were reported by police as having either "severe" or "very severe" damage. For occupants who were identified through data linkage as having been hospitalized, the Injury Severity Score (ISS) was calculated using ICDMAP-90 software, and the scores were stratified into the following categories: critical (>24), severe (15-24), moderate (9-14), and mild (<9). We then created an outcome variable, injury severity level, with five levels: killed; hospitalized with at least moderate injuries (ISS = critical, severe, or moderate); hospitalized with mild injuries (ISS = mild); injured according to the police report but not hospitalized; and no apparent injury according to the police report. We performed a stepwise, ordinal logistic regression of injury severity, using independent variables identified from the existing crash literature. RESULTS: Occupant risk factors for higher levels of injury severity selected by the regression were age (risk increased with age, other factors being equal), female gender, restraint non-use, ejection from the vehicle, and driver impairment (by alcohol and/or drugs). Crash risk factors included head-on collision, collision with a fixed object, vehicle rollover, and vehicle fire. Roadway/environmental factors were federal- or state-maintained roadway and posted speed limit 89 kph (55 mph) or greater. CONCLUSIONS: Many of the identified risk factors are explicitly or implicitly mentioned in the strategic plans of key organizations involved in highway safety and injury prevention in Kentucky. Our analysis provides additional evidence of their importance, and confirms that their mitigation will reduce injury severity in crashes involving severe vehicle damage. Additionally, older occupants and female occupants showed increased risks of serious injury, but to our knowledge these factors are not currently addressed in any state plans. An opportunity exists to clarify the nature of these risks through further studies, which might lead to the identification of countermeasures specific to these populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号