首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose: This study collected and analyzed available testing of motor vehicle seat strength in rearward loading by a body block simulating the torso of an occupant. The data were grouped by single recliner, dual recliner, and all belts to seat (ABTS) seats.

Methods: The strength of seats to rearward loading has been evaluated with body block testing from 1964 to 2008. The database of available tests includes 217 single recliner, 65 dual recliner, and 18 ABTS seats. The trends in seat strength were determined by linear regression and differences between seat types were evaluated by Student's t-test. The average peak moment and force supported by the seat was determined by decade of vehicle model year (MY).

Results: Single recliner seats were used in motor vehicles in the 1960s to 1970s. The average strength was 918 ± 224 Nm (n = 26) in the 1960s and 1,069 ± 293 Nm (n = 65) in the 1980s. There has been a gradual increase in strength over time. Dual recliner seats started to phase into vehicles in the late 1980s. By the 2000s, the average strength of single recliner seats increased to 1,501 ± 335 Nm (n = 14) and dual recliner seats to 2,302 ± 699 Nm (n = 26). Dual recliner seats are significantly stronger than single recliner seats for each decade of comparison (P < .001). The average strength of ABTS seats was 4,395 ± 1,185 in-lb for 1989–2004 MY seats (n = 18). ABTS seats are significantly stronger than single or dual recliner seats (P < .001). The trend in ABTS strength is decreasing with time and converging toward that of dual recliner seats.

Conclusions: Body block testing is an quantitative means of evaluating the strength of seats for occupant loading in rear impacts. There has been an increase in conventional seat strength over the past 50 years. By the 2000s, most seats are 1,700–3,400 Nm moment strength. However, the safety of a seat is more complex than its strength and depends on many other factors.  相似文献   


2.
Objective: The objective of this article is to compare the performance of forward-facing child restraint systems (CRS) mounted on 2 different seats.

Methods: Two different anthropomorphic test device (ATD) sizes (P3 and P6), using the same child restraint system (a non-ISOFIX high-back booster seat), were exposed to the ECE R44 regulatory deceleration pulse in a deceleration sled. Two different seats (seat A, seat B) were used. Three repetitions per ATD and mounting seat were done, resulting in a total of 12 sled crashes. Dummy sensors measured the head tri-axial acceleration and angular rate and the thorax tri-axial acceleration, all acquired at 10,000 Hz. A high-speed video camera recorded the impact at 1,000 frames per second. The 3D kinematics of the head and torso of the ATDs were captured using a high-speed motion capture system (1,000 Hz). A pair-matched statistical analysis compared the outcomes of the tests using the 2 different seats.

Results: Statistically significant differences in the kinematic response of the ATDs associated with the type of seat were observed. The maximum 3 ms peak of the resultant head acceleration was higher on seat A for the P3 dummy (54.5 ± 1.9 g vs. 44.2 ± 0.5 g; P =.012) and for the P6 dummy (56.0 ± 0.8 g vs. 51.7 ± 1.2 g; P =.015). The peak belt force was higher on seat A than on seat B for the P3 dummy (5,488.0 ± 198.0 N vs. 4,160.6 ± 63.6 N; P =.008) and for the P6 dummy (7,014.0 ± 271.0 N vs. 5,719.3 ± 37.4 N; P =.015). The trajectory of the ATD head was different between the 2 seats in the sagittal, transverse, and frontal planes.

Conclusion: The results suggest that the overall response of the booster-seated occupant exposed to the same impact conditions was different depending on the seat used regardless of the size of the ATD. The differences observed in the response of the occupants between the 2 seats can be attributed to the differences in cushion stiffness, seat pan geometry, and belt geometry. However, these results were obtained for 2 particular seat models and a specific CRS and therefore cannot be directly extrapolated to the generality of vehicle seats and CRS.  相似文献   


3.
4.
Objective: This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics.

Results: The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had ?1,696 N anterior lumbar shear force and ?205.2 Nm extension moment. There was ?1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had ?500 N shear force and ?49.7 Nm extension moment. There was ?839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had similar peak lumbar responses; however, they occurred later due to the forward lean of the dummy.

Conclusions: The design and performance of seats have significantly changed over the past 20 years. Modern seats use a perimeter frame allowing the occupant to pocket into the seatback. Higher and more forward head restraints allow a stronger frame because the head, neck, and torso are more uniformly supported with the seat more upright in severe rear impacts. The overall effect has been a reduction in thoracic and lumbar loads and risks for injury.  相似文献   

5.
Objective: Since 2000, numerous improvements have been made to the National Association for Stock Car Auto Racing, Incorporated (NASCAR®) driver restraint system, resulting in improved crash protection for motorsports drivers. Advancements have included seats, head and neck restraints (HNRs), seat belt restraint systems, driver helmets, and others. These enhancements have increased protection for drivers from severe crash loading. Extending protection to the driver's extremities remains challenging. Though the drivers’ legs are well contained for lateral and vertical crashes, they remain largely unrestrained in frontal and frontal oblique crashes.

Method: Sled testing was conducted for the evaluation of an energy-absorbing (EA) toe board material to be used as a countermeasure for leg and foot injuries. Testing included baseline rigid toe boards, tests with EA material–covered toe boards, and pretest positioning of the 50th percentile male frontal Hybrid III anthropomorphic test device (ATD) lower extremities. ATD leg and foot instrumentation included foot acceleration and tibia forces and moments.

Results: The sled test data were evaluated using established injury criteria for tibial plateau fractures, leg shaft fractures, and calcaneus, talus, ankle, and midfoot fractures.

Conclusion: A polyurethane EA foam was found to be effective in limiting axial tibia force and foot accelerations when subjected to frontal impacts using the NASCAR motorsport restraint system.  相似文献   


6.
Objective: To investigate trends of motorcyclist fatalities and identify at-risk populations by motorcyclist demographics and crash characteristics.

Methods: We used the Fatality Analysis Reporting System (FARS) database (2000–2016) to track fatality rate trends, which were quantified by using Poisson mixed-effects regression models comparing 2000–2001 and 2007–2008, as well as 2009–2010 and 2015–2016.

Results: The overall fatality rate per 100,000 population increased from 2000 to 2016, defined by two trend lines—before and after the economic recession in 2008–2009. The overall fatality rate ratio between 2000–2001 and 2007–2008 was 1.60 [95% Confidence Interval (CI): 1.51–1.70], and between 2009–2010 and 2015–2016 was 1.09 (95% CI: 1.02–1.18). Fatality rates increased among all age groups, particularly for motorcyclists aged 60 and older. Those aged 18–29 had the highest fatality rates overall. Age-and-sex standardized state fatality rates were consistently highest in Wyoming, South Dakota, and South Carolina and lowest in Massachusetts, New York and New Jersey.

Conclusion: Motorcycle fatality rates increased overall and across all age groups between 2000 and 2016. Fatalities for the oldest riders showed the steadiest increasing trends. Results highlight the continued public health burden of motorcyclist fatalities and, by extension, the importance of improving motorcycle safety.  相似文献   


7.
Objective: The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems.

Methods: Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters.

Results: Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes.

Conclusions: This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.  相似文献   


8.
Objective: In this study, we assessed the number of child passenger safety technicians (CPSTs) in Michigan over 4 years and characterized the CPST workforce in 2015 to identify factors associated with high productivity and longevity in the field.

Methods: We determined the number of CPSTs and those newly certified using lists from the Michigan Office of Highway Safety Planning (OHSP) from 2012 to 2015. We conducted a statewide survey of Michigan CPSTs in October 2015. Analyses were conducted in 2016. The survey assessed demographic characteristics, reasons to enter the field and maintain certification, and motivations to conduct seat checks. We used CPST-reported time devoted to seat checks and average number of seats checked per month to create a composite “activity level” variable. We examined activity levels across several characteristics.

Results: The number of CPSTs ranged from 941 to 980 over the study period, with approximately 200 new certifications annually. In 2015, surveys were started by 496 of 962 eligible CPSTs and 427 submitted complete responses. CPST-instructors had a higher response rate than CPSTs in general (89 vs. 49%, P < .0001). The majority of respondents were women (71%) and self-identified as white (88%). More than one third were 35–44 years old. Just 7% were comfortable checking seats using a language other than English. “Personal reasons” were most often cited motivation for becoming a CPST and maintaining certification. Natural fit/job enhancement were more common reasons to maintain certification than become a CPST. Time and distance had the greatest influence on seat check participation. Perceived need, appointments vs. drop-in, and employer factors were very influential for 10–15% of CPSTs. Few CPSTs considered free food and payments/giveaways very influential. About 40% of respondents were considered high-activity (>24 seats checked/year), one third medium-activity (5 to 24 seats checked/year), and one quarter low-activity (<5 seats checked/year). High-activity CPSTs most commonly reported both being paid and volunteering their time to check seats, worked with a Safe Kids coalition, worked in law enforcement or social services, and had recertified at least once. Motivation to participate in seat checks did not vary with activity level.

Conclusions: Understanding the demographic characteristics and motivations of CPSTs can help Michigan OHSP recruit and retain a workforce dedicated to increasing the safety of child passengers. Agencies hosting seat checks can use these results to align the strategies they employ to incentivize CPSTs to serve in their communities with the factors that have the greatest influence on CPST participation.  相似文献   


9.
Purpose: This is a study of the influence of an unbelted rear occupant on the risk of severe injury to the front seat occupant ahead of them in frontal crashes. It provides an update to earlier studies.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to belted drivers and front passengers in frontal crashes by the presence of a belted or unbelted passenger seated directly behind them or without a rear passenger. Frontal crashes were identified with GAD1 = F without rollover (rollover ≤ 0). Front and rear outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4+F was determined using the number of occupants with known injury status MAIS 0+F. Standard errors were determined.

Results: The risk for severe injury was 0.803 ± 0.263% for the driver with an unbelted left rear occupant and 0.100 ± 0.039% with a belted left rear occupant. The driver's risk was thus 8.01 times greater with an unbelted rear occupant than with a belted occupant (P <.001). With an unbelted right rear occupant behind the front passenger, the risk for severe injury was 0.277 ± 0.091% for the front passenger. The corresponding risk was 0.165 ± 0.075% when the right rear occupant was belted. The front passenger's risk was 1.68 times greater with an unbelted rear occupant behind them than a belted occupant (P <.001). The driver's risk for MAIS 4+F was highest when their seat was deformed forward. The risk was 9.94 times greater with an unbelted rear occupant than with a belted rear occupant when the driver's seat deformed forward. It was 13.4 ± 12.2% with an unbelted occupant behind them and 1.35 ± 0.95% with a belted occupant behind them.

Conclusions: Consistent with prior literature, seat belt use by a rear occupant significantly lowered the risk for severe injury to belted occupants seated in front of them. The reduction was greater for drivers than for front passengers. It was 87.5% for the driver and 40.6% for the front passenger. These results emphasize the need for belt reminders in all seating positions.  相似文献   


10.
Objective: This study investigated overall performance of an energy-absorbing sliding seat concept for whiplash neck injury prevention. The sliding seat allows its seat pan to slide backward for some distance under certain restraint force to absorb crash energy in rear impacts.

Methods: A numerical model that consisted of vehicle interior, seat, seat belt, and BioRID II dummy was built in MADYMO to evaluate whiplash neck injury in rear impact. A parametric study of the effects of sliding seat parameters, including position and cushion stiffness of head restraint, seatback cushion stiffness, recliner characteristics, and especially sliding energy-absorbing (EA) restraint force, on neck injury criteria was conducted in order to compare the effectiveness of the sliding seat concept with that of other existing anti-whiplash mechanisms. Optimal sliding seat design configurations in rear crashes of different severities were obtained. A sliding seat prototype with bending of a steel strip as an EA mechanism was fabricated and tested in a sled test environment to validate the concept. The performance of the sliding seat under frontal and rollover impacts was checked to make sure the sliding mechanism did not result in any negative effects.

Results: The protective effect of the sliding seat with EA restraint force is comparable to that of head restraint–based and recliner stiffness–based anti-whiplash mechanisms. EA restraint force levels of 3 kN in rear impacts of low and medium severities and 6 kN in impacts of high severity were obtained from optimization. In frontal collision and rollover, compared to the nonsliding seat, the sliding seat does not result in any negative effects on occupant protection. The sled test results of the sliding seat prototype have shown the effectiveness of the concept for reducing neck injury risks.

Conclusion: As a countermeasure, the sliding seat with appropriate restraint forces can significantly reduce whiplash neck injury risk in rear impacts of low, medium, and high severities with no negative effects on other crash load cases.  相似文献   


11.
Objective: Since 2005, National Association for Stock Car Auto Racing, Incorporated (NASCAR) drivers have been required to use a head and neck restraint system (HNR) that complies with SFI Foundation, Inc. (SFI) 38.1. The primary purpose of the HNR is to control and limit injurious neck loads and head kinematics during frontal and frontal oblique impacts. The SFI 38.1 performance specification was implemented to establish a uniform test procedure and minimum standard for the evaluation of HNRs using dynamic sled testing. The purpose of this study was to evaluate the repeatability of the current SFI 38.1 test setup and explore the effects of a polyester seat belt restraint system.

Method: Eight sled tests were conducted using the SFI 38.1 sled test protocol with additional test setup constraints. Four 0° frontal tests and 4 30° right frontal (RF) oblique tests were conducted. The first 3 tests of each principal direction of force (PDOF) used nylon SFI 16.1 seat belt restraint assemblies. The fourth test of each PDOF used polyester SFI 16.6 seat belt restraint assemblies. A secondary data set (Lab B Data) was also supplied by the HNR manufacturer for further comparisons. The International Organization for Standardization (ISO) 18571 objective comparison method was used to quantify the repeatability of the anthropomorphic test device (ATD) resultant head, chest, and pelvis acceleration and upper neck axial force and flexion extension bending moment time histories across multiple tests.

Results: Two data sets generated using the SFI 38.1 test protocol exhibited large variations in mean ISO scores of ATD channels. The 8 tests conducted with additional setup constraints had significantly lower mean ISO score coefficients of variation (CVs). The Lab B tests conducted within the current specification but without the additional test setup constraints had larger mean ISO score standard deviation and CV for all comparisons. Specifically, tests with the additional setup constraints had average CVs of 3.3 and 2.9% for the 0° and 30° RF orientations, respectively. Lab B tests had average CVs of 22.9 and 24.5%, respectively. Polyester seat belt comparisons had CVs of 5.3 and 6.2% for the 0° and 30° RF orientations, respectively.

Conclusion: With the addition of common test setup constraints, which do not violate the specification, the SFI 38.1 test protocol produced a repeatable test process for determining performance capabilities of HNRs within a single sled lab. A limited study using polyester webbing seat belt assemblies versus the nylon material called for in SFI 38.1 indicates that the material likely has less effects on ATD upper neck axial force and flexion extension bending moment time histories than the test setup freedom currently available within the specification. The additional test setup constraints are discussed and were shown to improve ATD response repeatability for a given HNR.  相似文献   


12.
Objective: The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model.

Methods: Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion.

Results: The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment.

Conclusions: The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.  相似文献   


13.
Objective: Research has found that mandatory motorcycle helmet laws increase helmet use and reduce motorcycle-related fatalities. However, the association between state moped helmet laws and helmet use in the United States has not been examined. This study investigated this association among a census of fatally injured moped riders in the United States.

Methods: A logistic regression model was constructed to analyze data extracted from the Fatality Analysis Reporting System (FARS) to examine risk factors for helmet nonuse among 572 moped riders fatally injured between 2011 and 2015.

Results: Fatally injured moped riders in states with universal helmet laws had 69 times the odds of wearing a helmet (P < .001).

Conclusions: Findings suggest that universal moped helmet laws increase helmet use. However, additional research is needed to examine helmet laws and use among nonfatally injured moped riders.  相似文献   


14.
Objective: As vehicle safety technologies and evaluation procedures advance, it is pertinent to periodically evaluate injury trends to identify continuing and emerging priorities for intervention. This study examined detailed injury distributions and injury risk trends in belted occupants in frontal automobile collisions (10 o’clock to 2 o’clock) using NASS-CDS (1998–2015).

Methods: Injury distributions were examined by occupant age and vehicle model year (stratified at pre- and post-2009). Logistic regression models were developed to examine the effects of various factors on injury risk (by body region), controlling for delta-V, sex, age, height, body mass index (BMI), vehicle model year (again stratified at 2009).

Results: Among other observations, these analyses indicate that newer model year vehicles (model year [MY] 2009 and later) carry less risk of Abbreviated Injury Scale (AIS) 2+ and AIS 3+ injury compared to older model year vehicles, with odds ratios of 0.69 (AIS 2+) and 0.45 (AIS 3+). The largest reductions in risk between newer model year vehicles and older model year vehicles occur in the lower extremities and in the risk of skull fracture. There is no statistically significant change in risk of AIS 3+ rib fracture or sternum injury between model year categories. Females are at greater risk of AIS 2+ and AIS 3+ injury compared to males, with increased risk across most injury types.

Conclusions: For belted occupants in frontal collisions, substantial reductions in injury risk have been realized in many body regions in recent years. Risk reduction in the thorax has lagged other body regions, resulting in increasing prevalence among skeletal injuries in newer model year vehicles (especially in the elderly). Injuries also remain common in the arm and hand/wrist for all age ranges studied. These results provide insight into where advances in the field have made gains in occupant protection and what injury types remain to be addressed.  相似文献   


15.
16.
Objective: This study explores the influence of mobile phone secondary tasks on driving from the perspective of visual, auditory, cognitive, and psychomotor (VACP) multiple resource theory, and it is anticipated to benefit the human-centered design of mobile phone use while driving.

Methods: The present study investigated 6 typical phone use scenarios while driving and analyzed the effects of phone use distractions on driving performance. Thirty-six participants were recruited to participate in this experiment. We abandoned traditional secondary tasks such as conversations or dialing, in which cognitive resources can become interference. Instead, we adopted an arrow secondary task and an n-back delayed digit recall task.

Results: The results show that all mobile phone use scenarios have a significant influence on driving performance, especially on lateral vehicle control. The visual plus psychomotor resource occupation scenario demonstrated the greatest deterioration of driving performance, and there was a significant deterioration of driving speed and steering wheel angle once the psychomotor resource was occupied.

Conclusions: Phone use distraction leads to visual, cognitive, and/or motor resource functional limitations and thus causes lane violations and traffic accidents.  相似文献   


17.
Objectives: The objective of this study was to examine the frequency of psychoactive drugs and alcohol in drivers under suspicion of driving under the influence of drugs and alcohol in 2015 and 2016 in the eastern part of Denmark. The trends in the number of traffic cases sent for drug analysis since 2000 and alcohol analysis since 2011 are also discussed.

Methods: Blood samples from drivers suspected of being under the influence of alcohol and/or medication and/or illicit drugs in 2015 and 2016 were investigated as requested by the police. The blood samples were screened for alcohol and/or tetrahydrocannabinol (THC) alone, for other drugs (covering all drugs, except THC, listed in the Danish list of narcotic drugs), or for THC and other drugs. Age and gender were also recorded. The number of drug traffic cases since 2000 and the number of alcohol cases since 2011 were extracted from our Laboratory Information Management System (LIMS).

Results: In total, 11,493 traffic cases were investigated. Alcohol and/or drugs exceeded the legal limit in 9,657 (84%) cases. Men constituted 95% of the drivers investigated for drugs and 88% of the alcohol cases. The drivers investigated for drugs consisted primarily of young men, whereas drivers investigated for alcohol were older.

The frequency was higher for positive alcohol cases above the legal limit (87%) than for drug cases (76%) above the fixed concentration limit. THC (67–69%) was the most frequently detected drug above the legal limit, followed by cocaine (27–28.5%), amphetamine (17%), and clonazepam (6–7%) in both years. Morphine (5.4%), included among the 5 most frequent drugs in 2015, was replaced by methadone (4.6%) in 2016. Few new psychoactive drugs (NPS) were detected.

The number of traffic cases sent for drug analysis has increased more than 30-fold since 2000–2006, and the number of traffic cases submitted in 2016 for drug analysis was higher than the number for alcohol analysis; the latter has decreased since 2011.

Conclusion: Overall, alcohol was the most frequent compound detected above the legal limit in both years, followed by the well-known illicit drugs THC, cocaine, and amphetamine. NPS were seldom seen. One consequence of the increased focus on drugs in traffic has been an immense increase in drug traffic cases sent for analysis since 2006 in the eastern part of Denmark. Although this survey revealed only minimal changes compared to earlier investigations, surveys like this are invaluable for monitoring abuse patterns and trends in drugged and drunken driving.  相似文献   


18.
Objective: The objective of this study is to develop a novel algorithm on a mobile system that can warn drivers about the possibility of a collision with a pedestrian. The constraints of the algorithm are near-real-time detection speed and a good detection rate.

Method: Histogram of gradients (HOG)-based detection is widely used in pedestrian safety applications; however, it has low detection speed for real-time systems. Hence, it has no direct usage for mobile systems. In order to achieve near-real-time detection speed, partial Haar transform predetections are applied to an image before HOG detection. The partial and HOG detections are merged and a score-based confidence level is defined for the final detection phase. In this way, the outcome is prioritized and different warning levels can be issued to warn the driver before a possible pedestrian collision.

Results: The proposed algorithm provides an increase in detection speed (from 46 to 76 fps) and detection rate (from 80 to 91%) with respect to HOG-based pedestrian detection. It also improves confidence of the results by multidetection merging and score assignment to detections.

Conclusions: Performance improvement of the algorithm is compared with respect to state-of-the-art detectors/algorithms. Based on the detection rate and detection speed performance, it can be concluded that the proposed algorithm is suitable to be used for mobile systems to warn drivers about the possibility of collision with a pedestrian.  相似文献   


19.
Objectives: The Insurance Institute for Highway Safety (IIHS) rates front seat/head restraint designs using a combination of static and dynamic measurements following RCAR-IIWPG procedures. The purpose of this study was to determine whether vehicles with better IIHS-rated seats/head restraints had lower injury risk in rear-end collisions and how the effect of better rated seats interacted with driver gender and age.

Methods: The presence of an associated insurance injury claim was determined for rear-impact crashes using 2001–2014 model year cars and SUVs. Logistic regression was used to compare injury risk for vehicles with good, acceptable, and marginal IIHS-rated seats/head restraints with poor-rated seats/head restraints. Analyses were run by gender and driver age and also by the rate of more severe injury claims.

Results: Injury rates were 11.2% lower for vehicles with seats/head restraints rated good compared to vehicles with seats/head restraints rated poor. The percentage reduction for good- versus poor-rated seats was greater for females (12.7%) than males (8.9%). Comparing good- with poor-rated seats, driver ages 15–24 had the largest reduction at 19.8%, followed by 10.7% for driver ages 45–64 and 10.4% for driver ages 25–44.

Conclusions: Seats/head restraints with better IIHS ratings are associated with lower injury rates in rear-impact collisions than seats rated poor. The reductions in injury rates were strongest for females and for young-to–middle-age drivers. The strong reductions in injury rates for these groups are encouraging given their high initial injury rates.  相似文献   


20.
Objective: Though motor vehicle crashes (MVCs) were the main cause of head trauma from road traffic injuries (RTIs), motorcycle crashes (MCCs) are now a major cause of RTI-related head injury (HI) in many developing countries.

Methods: Using a prospective database of HIs from a neurosurgical practice in a sub-Saharan African developing country, a cross-sectional survey was conducted for the trauma demography and clinical epidemiology of this MCC-related HI.

Results: Motorcycle crashes accounted for 57% (473/833) of all RTI-related HIs in this registry. The victims, with a mean age of 33.1 years (SD = 18.3), consisted mainly of males (83.1%), those of low socioeconomic status (>90%), and those aged between 20 and 40 years old (56%). MCCs involved only riders in 114 cases (114/473, 32.1%), of which 69% were motorcycle–motorcycle crashes. The HI was moderate–severe in 50.8%; clinical symptomatology of significant HI included loss of consciousness (92%), anisocoria (35%), Abbreviated Injury Scale head (AIS–head) score > 3 (28%), and CT-Rotterdam score > 3 (30%). Extracranial systemic injury involved the limbs most frequently, with an Injury Severity Score (ISS) >25 in 49%. The fatality rate was 24%.

MCC-related HI among pedestrian victims involved more vulnerable age groups (the young and elderly) but have lower mean ISS compared to motorcycle passengers (mean ISS = 23.5 [11.6] vs. 27.4 [13.0]; 95% confidence interval [CI], 1.27–6.49; P = .004). In addition, compared to a contemporary cohort of MVC-related HIs in our registry, MCC victims were older (mean age 34.8 years [18.0] vs. 30.8 [18.4]; P = .002); had higher proportions of certain extracranial trauma like long bone fractures (71 vs. 29%; P = .02); and suffered fewer surgical brain lesions (25.5 vs. 17.2%; P = .004).

Conclusions: Motorcycle crashes are now a significant threat to the heads, limbs, and lives of vulnerable road users in developing countries.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号