首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Concerns about regional surpluses of manure phosphorus (P) leading to increased P losses in runoff have led to interest in diet modification to reduce P concentrations in diets. The objectives of this study were to investigate how dietary P amendment affected P concentrations in litters and P losses in runoff following land application. We grew two flocks of turkeys on the same bed of litter using diets with two levels of non-phytate phosphorus (NPP), with and without phytase. The litters were incorporated into three soils in runoff boxes at a plant-available nitrogen (PAN) rate of 168 kg PAN/ha, with runoff generated on Days 1 and 7 under simulated rainfall and analyzed for dissolved reactive phosphorus (DRP) and total P. Litters were analyzed for water-soluble phosphorus (WSP) and total P, while soils in the runoff boxes were analyzed for WSP and Mehlich-3 phosphorus (M3-P). Formulating diets with lower NPP and phytase both decreased litter total P. Phytase had no significant effect on litter WSP at a 1:200 litter to water extraction ratio, but decreased WSP at a 1:10 extraction ratio. Using a combination of reducing NPP fed and phytase decreased the total P application rate by up to 38% and the P in surplus of crop removal by approximately 48%. Reducing the NPP fed reduced DRP in runoff from litter-amended soils at Day 1, while phytase had no effect on DRP concentrations. Increase in soil M3-P was dependent on total P applied, irrespective of diet. Reducing overfeeding of NPP and utilizing phytase in diets for turkeys should decrease the buildup of P in soils in areas of intensive poultry production, without increasing short-term concerns about dissolved P losses.  相似文献   

2.
Modifying broiler diets to mitigate water quality concerns linked to excess phosphorus (P) in regions of intensive broiler production has recently increased. Our goals were to evaluate the effects of dietary modification, using phytase and reduced non-phytate phosphorus (NPP) supplementation, on P speciation in broiler litters, changes in litter P forms during long-term storage, and subsequent impacts of diets on P in runoff from litter-amended soils. Four diets containing two levels of NPP with and without phytase were fed to broilers in a three-flock floor pen study. After removal of the third flock, litters were stored for 440 d at their initial moisture content (MC; 24%) and at a MC of 40%. Litter P fractions and orthophosphate and phytate P concentrations were determined before and after storage. After storage, litters were incorporated with a sandy and silt loam and simulated rainfall was applied. Phytase and reduced dietary NPP significantly reduced litter total P. Reducing dietary NPP decreased water-extractable inorganic phosphorus (IP) and the addition of dietary phytase reduced NaOH- and HCl-extractable organic P in litter, which correlated well with orthophosphate and phytic acid measured by 31P nuclear magnetic resonance (NMR), respectively. Although dry storage caused little change in P speciation, wet storage increased concentrations of water-soluble IP, which increased reactive P in runoff from litter-amended soils. Therefore, diet modification with phytase and reduced NPP could be effective in reducing P additions on a watershed scale. Moreover, efforts to minimize litter MC during storage may reduce the potential for dissolved P losses in runoff.  相似文献   

3.
Environmental concerns about phosphorus (P) losses from animal agriculture have led to interest in dietary strategies to reduce the concentration and solubility of P in manures and litters. To address the effects of dietary available phosphorus (AvP), calcium (Ca), and phytase on P excretion in broilers, 18 dietary treatments were applied in a randomized complete block design to each of four replicate pens of 28 broilers from 18 to 42 d of age. Treatments consisted of three levels of AvP (3.5, 3.0, and 2.5 g kg(-1)) combined with three levels of Ca (8.0, 6.9, and 5.7 g kg(-1)) and two levels of phytase (0 and 600 phytase units [FTU]). Phytase was added at the expense of 1.0 g kg(-1) P from dicalcium phosphate. Fresh litter was collected from pens when the broilers were 41 d of age and analyzed for total P, soluble P, and phytate P as well as P composition by (31)P nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the inclusion of phytase at the expense of inorganic P or reductions in AvP decreased litter total P by 28 to 43%. Litter water-soluble P (WSP) decreased by up to 73% with an increasing dietary Ca/AvP ratio, irrespective of phytase addition. The ratio of WSP/total P in litter decreased as the dietary Ca/AvP ratio increased and was greater in the phytase-amended diets. This study indicated that while feeding reduced AvP diets with phytase decreased litter total P, the ratio of Ca/AvP in the diet was primarily responsible for effects on WSP. This is important from an environmental perspective as the amount of WSP in litter could be related to potential for off-site P losses following land application of litter.  相似文献   

4.
Decreasing dietary phosphorus (P) has the potential to reduce P excreted in manure and therefore alleviate the environmental degradations associated with intensive animal farming. We evaluated reducing dietary P for broiler breeders as an aid to reduce manure total and water soluble phosphorus (WSP). Broiler breeders were fed diets high and low in dietary P, with and without phytase, from 22 to 64 wk of age. At the end of the 42-wk production period, manure was collected from four locations in each two-thirds slat, one-third litter breeder pen: the litter scratch area, under the drinker in the slat area, under the feeder in the slat area, and in a clean area of the slat area away from feeder or drinker. After the initial sampling, all manure was removed from pens and representative samples were stored for 6 mo with and without feed mixed in to simulate the effect of spilled feed. Total P was determined on all pen samples, and moisture and WSP determined on the pen and stored samples. The manure collected under the drinker had much greater moisture due to spilled water. This was associated with much greater WSP in this location, showing the importance of good water management. The manure from under the feeder had similar WSP as manure from the clean area, so spilled feed did not significantly affect WSP. Dietary phytase either had no effect or significantly decreased manure WSP. However, addition of dietary phytase to the feed led to slightly elevated manure moisture. Since moisture was correlated with manure WSP this may explain some of the variability in WSP results between studies. Over 6 mo of storage WSP increased and generally followed the same ranking order at 168 d as at 1 d among the dietary treatments (high>high+phytase>low>low+phytase). Combining decreased dietary P and phytase reduced both manure total P and WSP by 42%. As total P and WSP are indicators of the long and short term impacts manure applications can have on P losses from manured soils, diet modification should be seen as environmentally beneficial.  相似文献   

5.
The effect of dietary non-phytin phosphorus (NPP) and phytase (PHY) concentration on total phosphorus (TP) and water-soluble phosphorus (WSP) excretion was determined. Diets tested in broiler experiments were: National Research Council nutrient requirements for non-phytin phosphorus (NRC), NRC + PHY, reduced non-phytin phosphorus (RED), and RED + PHY. Turkey and swine experiment diets included NRC, RED, and RED + PHY. For all experiments, except broiler Experiment 1, excreta were: (i) boiled, antibiotic added, then frozen; (ii) boiled, antibiotic added, incubated (37 degrees C for 72 h), then frozen; and (iii) incubated, boiled, antibiotic added, then frozen. In Experiment 1, excreta were collected and frozen or incubated for 24 or 48 h. In broiler Experiment 1, WSP was not affected by phytase but increased with post-excretion incubation. In a broiler Experiment 2, reducing NPP resulted in reduced excreta TP and WSP (11.3 to 8.3 and 5.3 to 2.7 g kg(-1)). Feeding RED + PHY diets resulted in less TP and WSP (7.6 and 0.6 g kg(-1)) as compared with NRC + PHY (11.2 and 3.9 g kg(-1), Experiment 3). Incubation resulted in increased WSP, irrespective of phytase addition such that WSP as a percent of TP was similar among treatments. Addition of antibiotics before incubation prevented the increase in WSP. Similar results were observed with turkey and swine. Therefore, when phytase is used properly (i.e., with a simultaneous reduction of NPP), WSP or WSP as a percent of TP are not affected. The increase in WSP as a percent of TP post-excretion is a function of excreta microbial activity and not dietary phytase addition.  相似文献   

6.
Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP.  相似文献   

7.
Modifying poultry diets by reducing mineral P supplementation and/or adding phytase may change the chemical composition of P in manures and affect the mobility of P in manure-amended soils. We studied the speciation of P in manures produced by broiler chickens and turkeys from either normal diets, or diets with reduced amounts of non-phytate phosphorus (NPP) and/or phytase, using a combination of chemical fractionation and synchrotron X-ray absorption near edge structure (XANES) spectroscopy. All broiler litters were rich in dicalcium phosphate (65-76%), followed by aqueous phosphate (13-18%), and phytic acid (7-20%); however, no hydroxylapatite was observed. Similarly, normal turkey manure had 77% of P as dicalcium phosphate and had no hydroxylapatite, while turkey manure from diets that had reduced NPP and phytase contained equal proportions of dicalcium phosphate (33-45%) and hydroxylapatite (35-39%). This is attributed to the higher total Ca to P ratio (>2) in modified turkey manures that resulted in transformation of more soluble (dicalcium phosphate) to less soluble P compounds (hydroxylapatite). Chemical fractionation showed that H2O-extractable P was the predominant form in broiler litter (56-77%), whereas aqueous phosphate determined with XANES was <18% indicating that H2O probably dissolved mineral forms of P (e.g., dicalcium phosphate). Results show that HCl extraction primarily removed phytic acid from broiler litters and normal turkey manure, while it removed a mixture of hydroxylapatite and phytic acid from modified turkey manures. The combination of chemical fractionation and XANES provided information about the nature of P in these manures, which may help to devise best management practices for manure use.  相似文献   

8.
Enzymatic hydrolysis of organic phosphorus in swine manure and soil   总被引:5,自引:0,他引:5  
Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.  相似文献   

9.
Phosphorus-based land application limits for manure have increased the importance of optimizing diet P management and accurately characterizing the bioavailability of manure P. We examined the effects of pig (Sus scrofa) diets formulated with high-available-P corn and phytase on P levels in excreta and slurry stored for 30, 60, 90, 120, and 150 d. Twenty-four pigs (approximately 14 kg each) were fed one of four low-P diets: (i) normal corn, no phytase (control); (ii) normal corn with 600 phytase units kg(-1) (PHY); (iii) high-available-P corn, no phytase (HAP); and (iv) high-available-P corn with 600 phytase units kg(-1) (HAP + PHY). Fresh fecal and stored slurry dry matter (DM) was analyzed for total phosphorus (TP), dissolved molybdate-reactive phosphorus (DRP), dissolved organic phosphorus (DOP), acid-soluble reactive phosphorus (ASRP), acid-soluble organic phosphorus (ASOP), and phytate phosphorus (PAP). The PHY, HAP, and HAP + PHY diets significantly (alpha = 0.05) decreased fecal TP 19, 17, and 40%, respectively, compared with the control. Dissolved reactive P was 36% lower in the HAP + PHY diet compared with the other diets. Relative fractions (percent of TP) of DRP, DOP, ASOP, and PAP in slurry generally decreased with storage time up to 150 d, with the largest decreases occurring within 60 to 90 d. Diet-induced differences in relative fractions of DRP, DOP, ASRP, and PAP were significant when averaged across storage times, simulating a mixed-age slurry. Relative fractions of DRP in simulated mixed-age slurries were higher in HAP and HAP + PHY diets, indicating that diet may affect P losses under certain P-based application scenarios.  相似文献   

10.
Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH)2 for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH)2 at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793,000 to 6500 mL-1. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.  相似文献   

11.
The loss of phosphorus (P) in runoff from agricultural soils may accelerate eutrophication in lakes and streams as well as degrade surface water quality. Limited soil specific data exist on the relationship between runoff P and soil P. This study investigated the relationship between runoff dissolved reactive phosphorus (DRP) and soil P for three Oklahoma benchmark soils: Richfield (fine, smectitic, mesic Aridic Argiustoll), Dennis (fine, mixed, active, thermic Aquic Argiudoll), and Kirkland (fine, mixed, superactive, thermic Udertic Paleustoll) series. These soils were selected to represent the most important agricultural soils in Oklahoma across three major land resource areas. Surface soil (0-15 cm) was collected from three designated locations, treated with diammonium phosphate (18-46-0) to establish a wide range of water-soluble phosphorus (WSP) (3.15-230 mg kg(-1)) and Mehlich-3 phosphorus (M3P) (27.8-925 mg kg(-1)). Amended soils were allowed to reach a steady state 210 d before simulated rainfall (75 mm h(-1)). Runoff was collected for 30 min from bare soil boxes (1.0 x 0.42 m and 5% slope) and analyzed for DRP and total P. Soil samples collected immediately before rainfall simulation were analyzed for the following: M3P, WSP, ammonium oxalate P saturation index (PSI(ox)), water-soluble phosphorus saturation index (PSI(WSP)), and phosphorus saturation index calculated from M3P and phosphorus sorption maxima (P(sat)). The DRP in runoff was highly related (p < 0.001) to M3P for individual soil series (r2 > 0.92). Highly significant relationships (p < 0.001) were found between runoff DRP and soil WSP for the individual soil series (r2 > 0.88). Highly significant relationships (p < 0.001) existed between DRP and different P saturation indexes. Significant differences (p < 0.05) among the slopes of the regressions for the DRP-M3P, DRP-WSP, DRP-PSI(ox), DRP-PSI(WSP), and DRP-P(sat) relationships indicate that the relationships are soil specific and phosphorus management decisions should consider soil characteristics.  相似文献   

12.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   

13.
An experiment was conducted to examine how potential phosphorus (P) bioavailability (inferred from speciation) differs in feed and feces collected in spring from four dairy herds representing different management systems: (i) total confinement with cows fed total mixed ration (TMR), (ii) total confinement with TMR plus P mineral supplement, (iii) a hybrid of confinement with TMR and pastoral grazing, and (iv) predominantly grazing with supplemental grains. A treatment was included that air dried feces to simulate conditions after dung deposition. Wet chemical techniques and solution (31)P nuclear magnetic resonance spectroscopy ((31)P-NMR) were used to identify P concentrations and compounds present in water (a surrogate for P in overland flow), dilute acid (0.012 M HCl, an estimate of P utilization by cattle), or NaOH-EDTA (a solution that maximizes the organic P extraction) extracts of feed and feces. In general, P concentration in feces paralleled P in feed. Air drying feces decreased water-extractable P by 13 to 61% largely due to a decrease in orthophosphate, whereas NaOH-EDTA-extractable P increased by 18 to 48%. Analysis of dilute HCl was unsuccessful due to orthophosphate precipitation when pH was adjusted to 12 for (31)P-NMR. In water extracts, more P was in bioavailable diester-P forms, undetectable by colorimetry, than in NaOH-EDTA extracts. In feed, orthophosphate dominated (46-70%), but myo-IHP varied with feed (<10% in forage samples but 43% in a TMR sample). The proportion of myo-IHP decreased in feces compared with feed via mineralization but decreased less in systems with a greater proportion of available P input (e.g., orthophosphate and phospholipids). Feed and drying effect the concentrations and forms of P in feces and their potential impact on soil and water quality. Although bioavailable P in feces from pasture-based and confined systems can be similar in spring, dung-P is distributed on a lower kg P ha(-1) rate in grazing systems. The best method to mitigate P loss from feces is to decrease P in feed.  相似文献   

14.
Information on the forms of P present in animal manure may improve our ability to manage manure P. In most investigations of manure P composition, only inorganic and total P are determined, and the difference between them is assigned as organic P. In this study, we explored the possibility of identifying and quantifying more specific organic P forms in animal manure with orthophosphate-releasing enzymes. Pig (Sus scrofa) manure and cattle (Bos taurus) manure were first sequentially fractionated into water-soluble P, NaHCO3-soluble P, NaOH-soluble P, HCl-soluble P, and residual P. The fractions were separately incubated with wheat phytase, alkaline phosphatase, nuclease P1, nucleotide pyrophosphatase, or their combinations. The released orthophosphate was determined by a molybdate blue method. Part of the organic P in those fractions could be identified by the enzymatic treatments as phytate (i.e., 39% for pig manure and 17% for cattle manure in water-soluble organic P), simple phosphomonoesters (i.e., 43% for pig manure and 15% for cattle manure in NaOH-soluble organic P), nucleotide-like phosphodiesters (2-12%), and nucleotide pyrophosphate (0-4%). Our data indicate that the enzymatic treatment is an effective approach to identify and quantify the organic P forms present in animal manures.  相似文献   

15.
Long-term application of phosphorus (P) with animal manure in amounts exceeding removal with crops leads to buildup of P in soil and to increasing risk of P loss to surface water and eutrophication. In most manures, the majority of P is held within inorganic forms, but in soil leachates organic P forms often dominate. We investigated the mobility of both inorganic and organic P in profile samples from a noncalcareous sandy soil treated for 11 yr with excessive amounts of pig slurry, poultry manure, or poultry manure mixed with litter. Solution 31P nuclear magnetic resonance spectroscopy was used to characterize NaOH-EDTA-extractable forms of P, corresponding to 64 to 93% of the total P concentration in soil. Orthophosphate and orthophosphate monoesters were the main P forms detected in the NaOH-EDTA extracts. A strong accumulation of orthophosphate monoesters was found in the upper layers of the manure-treated soils. For orthophosphate, however, increased concentrations were found down to the 40- to 50-cm soil layers, indicating a strong downward movement of this P form. This was ascribed to the strong retention of orthophosphate monoesters by the solid phase of the soil, preventing orthophosphate sorption and facilitating downward movement of orthophosphate. Alternatively, mineralization of organic P in the upper layers of the manure-treated soils may have generated orthophosphate, which could have contributed to the downward movement of the latter. Leaching of inorganic P should thus be considered for the assessment and the future management of the long-term risk of P loss from soils receiving large amounts of manure.  相似文献   

16.
There is a lack of information on how fertilization and initial Mehlich-3 phosphorus (M3P) interact to affect water soluble P (WSP) in soils. Our objectives were to (i) quantify the relationship between WSP and M3P for four textural diverse benchmark soils of North Carolina (NC) and (ii) quantify the change in WSP concentrations following P additions to soils over a wide range of initial M3P. Soils known to represent a wide range in M3P were collected from an Autryville loamy sand (loamy, siliceous, subactive, thermic Arenic Paleudults), Wasda muck (fine-loamy, mixed, semiactive, acid, thermic Histic Humaquepts), Georgeville silt loam (fine, kaolinitic, thermic Typic Kanhapludults), and Pacolet sandy clay loam (fine, kaolinitic, thermic Typic Kanhapludults) and analyzed for M3P, Fe, Al, and WSP. An incubation study was also conducted where four samples representing a range in M3P from each series were fertilized at rates of 150 and 300 kg P ha(-1), and WSP was measured at 1, 7, and 21 d after fertilization. The Wasda muck exhibited a change point at 115 mg P kg(-1) across a broad range of M3P concentrations (60-238 mg kg(-1)) while Autryville, Georgeville, and Pacolet series (with ranges in M3P of 32-328, 119-524, 0-1034 mg P kg(-1), respectively) maintained linear relationships between WSP and M3P. For the fertilized soils, significant increases in WSP occurred regardless of P rate. Yet, WSP concentrations were greater in soils with greater initial M3P. Thus, these data suggest that shifting animal waste applications to fields of relatively lower M3P concentrations would have an immediate impact on reducing risk for P losses, if all other factors are equal.  相似文献   

17.
At any time, the phosphorus (P) concentration in surface waters is determined by a complex interaction of inputs of soluble P and sorption-desorption reactions of P with sediments. This study investigated what factors control P in solution when various soil aggregates were mixed, seen as being analogous to selective soil erosion events, transport, and mixing within river systems. Fifteen soils with widely differing properties were each separated into three aggregate size fractions (2-52 microm, 53-150 microm, and 151-2,000 microm). Resin P, water-soluble phosphorus (WSP), and the phosphorus buffer capacity (PBC = resin P/WSP) were measured for each aggregate size fraction and WSP was also measured for 11 mixes of the aggregate fractions. The smallest aggregates tended to be enriched with resin P relative to the larger aggregates and the whole soils, while the opposite was true for WSP. As the PBC was a function of resin P and WSP, the PBC was greatest in the 2- to 52-microm aggregate size fraction in most cases. When two aggregate size fractions were mixed, the measured WSP was always lower than the predicted WSP (i.e., the average of the WSP in the two individual aggregates), indicating that WSP released by one aggregate fraction could be resorbed by another aggregate fraction. This resorption of P may result in lower than expected solution P concentration in some surface waters. The strength with which an eroded aggregate can release or resorb P to or from solution is in part determined by that aggregate's PBC.  相似文献   

18.
Cost effective feeding strategies are essential to deal with P surpluses associated with intensive animal agriculture and the consequent impact on water quality. Reduction of P overfeeding, use of feed additives to enhance dietary P utilization, and development of high available phosphorus (HAP) grains have all been shown to decrease fecal P excretion without impairing animal performance. Much progress has been made, but more research will be needed to refine these strategies to maximize reductions in P excretion while maintaining animal performance. Recent research has focused on the impact of modifying dietary P on the forms of P excreted and the mobility of P in soils amended with these manures, with strong treatment trends becoming evident in the literature. In general, dietary strategies have been developed that can effectively reduce the total P concentration in manures produced, and combining strategies usually leads to greater reductions than individual practices. However, the impact of different approaches on the solubility of P in manures and amended soils has been more variable. Soluble P remains of particular concern due to links between solubility of P in manure and P losses from manure-amended soils. In this paper, we outline the major strategies for reducing dietary P in different species, review the literature on the impact of these approaches on P forms in manures and amended soils, and discuss the potential beneficial effects on animal agriculture and the environment.  相似文献   

19.
Information is needed on organic polyphosphates such as myo-inositol 1,2,3,5/4,6-hexakis dihydrogenphosphate or phytate (IP6) contribution to the sources and sinks of dissolved phosphorus (PO4-P) in the soil-manure-water system. Effects of Na+, Ca2+, Al3+, and Fe3+ and cation to IP6-P mole ratios on the enzymatic dephosphorylation of IP6 were studied to determine controlling mechanisms of dephosphorylation and persistence in manure. Phytate- and PO4-P were analyzed by high-performance liquid chromatography. Phytate dephosphorylation by Aspergillus ficuum (Reichardt) Henn. phytase EC 3.1.3.8 decreases by 50 +/- 3.6 and 40 +/- 4% at pH 4.5 and 6, respectively, as Ca2+ concentrations increase and cation to IP6-P mole ratios reach 6:6. Polyanionic IP6 has a high affinity for Al3+ and Fe3+ and reductions in dephosphorylation average 27 and 32% at a cation to IP6-P mole ratio of 1:6 for Al3+ and Fe3+, respectively, while reaching more than 99% at a mole ratio of 6:6. A phytase-hydrolyzable phosphorus (PHP) fraction is native to ruminant animal manure and is proportional to total solids (TS) concentration in 1 to 100 g L(-1) suspensions. Added phytase, in effect, increases water-extractable P content of manure and the risk of environmental P dispersion. As the bioavailability and ecological effect of IP6-P appear to be regulated not only by pH-controlled enzyme activity but also by the associated counterions, the differential protective effects of cations influence the accuracy of manure PHP fraction estimates and increase phytate resistance to enzymatic dephosphorylation that may lead to its persistence in manure.  相似文献   

20.
The chemical forms of phosphorus in organic amendments are essential variables for proper management of these amendments for agro-environmental purposes. This study was performed to elucidate the forms of phosphorus in various organic amendments using state-of-the-art spectroscopic techniques. Anaerobically digested biosolids (BIO), hog (HOG), dairy (DAIRY), beef (BEEF), and poultry (POULTRY) manures were subjected to sequential extraction. The extracts and residues after extraction were analyzed by solution (31)P nuclear magnetic resonance (NMR) and synchrotron-based P 1s X-ray absorption near-edge structure (XANES) spectroscopies, respectively. Most of the total P analyzed by inductively coupled plasma- optical emission spectroscopy in the sequential extracts of organic amendments was orthophosphate, except POULTRY, which was dominated by organic P. The labile P fraction in all the organic amendments, excluding POULTRY, was mainly orthophosphate from readily soluble calcium and some aluminum phosphates. In the poultry litter, Ca phytate was the main P species controlling P solubility. The recalcitrant fraction of BIO was mainly associated with Al and Fe. Those of HOG, DAIRY, and POULTRY were calcium phytate, which were identified only as organic species in the XANES spectra. The combination of the three techniques-sequential chemical extraction, solution (31)P NMR spectroscopy, and P 1s XANES-provided molecular characterization of P in organic amendments that would not have been possible with just one or a combination of any two of these techniques. Therefore, P speciation of organic amendments should use solid-phase and aqueous speciation techniques as deemed feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号