首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
Temporal and spatial variations in particulate organic carbon (POC) in relation to primary production, chlorophyll a, phaeophytin, plankton abundance, secondary production and suspended particulate matter (SPM) were studied monthly for 1 year from April 1996 to March 1997 in a shallow tropical coastal lagoon on the southwest coast of India. Though temporal variations in all components were significant, spatial variabilities were not statistically significant. POC values range from 200 to 5690 mg C m3 h−1, while primary production, chlorophyll a, and phaeophytin varied between 0.02 and 14.53 mg C m−3 h−1, 0.87 and 23.11 mg m−3 and 3.02 and 30.581 mg m−3, respectively. Phytoplankton and zooplankton abundance varied from 0.01 to 655.5×105 no m−3 and negligible to 7.08×105 no m−3 respectively; secondary production from 10 to 490 mg C m−3 and SPM between 0.38 and 74.43×104 mg m−3 during this study. Temporally, postmonsoon months were observed to have the highest concentrations of POC in the lagoon waters. The bulk of the POC pool in the lagoon was composed of secondary producers (72%), followed by chlorophyll a (21%), phaeophytin (7%) and suspended particulate matter of inorganic origin (< 0.1%).  相似文献   

2.
The Oswaldo Cruz Foundation Campus (FIOCRUZ), in a suburban region of the city of Rio de Janeiro, was selected as a case study to assess the pollution released from vehicle and industrial facilities in Basin III, the most polluted area of the city. Concentrations of particulate matter (PM10) and trace metals in airborne particles were determined in an intensive field campaign. The samplings were performed every six days for 24 h periods, using a PM10 high volume sampler, from September 2004 to August 2005. PM10 mass concentrations were determined gravimetrically and the metals by ICP-OES. For PM10, the arithmetic mean for the period is 169 ± 42 μg m−3 which is 3.4 times the national recommended standard of 50 μg m−3. Additionally, 51% of the samplings exceeded the recommended 24 h limit of 150 μg m−3. Ca, Mg, Fe, Zn and Al were the metals that presented the higher concentrations. The correlation matrix gave two main clusters and three significant principal components (PC). Both PC1 and PC2 are associated to crustal, vehicular and industrial emissions while PC3 is mainly associated to geological material. Enrichment factors for Zn, Cu, Cd and Pb indicate that for these elements, anthropic sources prevail over natural inputs. PM10 levels showed a good correlation with hospital admissions for respiratory diseases in children and elderly people.  相似文献   

3.
Surface coal mining creates more air pollution problems with respect to dust than underground mining . An investigation was conducted to evaluate the characteristics of the airborne dust created by surface coal mining in the Jharia Coalfield. Work zone air quality monitoring was conducted at six locations, and ambient air quality monitoring was conducted at five locations, for a period of 1 year. Total suspended particulate matter (TSP) concentration was found to be as high as 3,723 μg/m3, respirable particulate matter (PM10) 780 μg/m3, and benzene soluble matter was up to 32% in TSP in work zone air. In ambient air, the average maximum level of TSP was 837 μg/m3, PM10 170 μg/m3 and benzene soluble matter was up to 30%. Particle size analysis of TSP revealed that they were more respirable in nature and the median diameter was around 20 μm. Work zone air was found to have higher levels of TSP, PM10 and benzene soluble materials than ambient air. Variations in weight percentages for different size particles are discussed on the basis of mining activities. Anionic concentration in TSP was also determined. This paper concludes that more stringent air quality standards should be adopted for coal mining areas and due consideration should be given on particle size distribution of the air-borne dust while designing control equipment.  相似文献   

4.
Agricultural NH3 emissions affect air quality and influence the nitrogen cycle. In the subject study, NH3 emissions from a broiler farm and the resulting atmospheric concentrations in the immediate vicinity during three growing cycles have been quantified. Additionally, vegetation along a transect in an adjacent woodland was analysed. The emissions were as high as 10 kg NH3 h−1 and the atmospheric concentrations ranged between 33 and 124 μg NH3 m−3 per week in the immediate vicinity. Measurements of the atmospheric concentrations over 7 weeks showed a substantial decline of mean concentrations (based on a 3-week average) from ∼13 to <3 μg NH3 m−3, at 45- and 415-m distance from the farm. Vegetation surveys showed that nitrophilous species flourished when they grew closest to the farm (their occurrence sank proportionately with distance). A clearly visible damage of pine trees was observed within 200 m of the farm; this illustrated the significant impact of NH3 emissions from agricultural sources on the sensitive ecosystem.  相似文献   

5.
Tropical and sub tropical regions are regarded as dominant source of biogenic volatile organic compounds emission (BVOC). However, measurement studies from these regions are limited and largely confined to South Africa and Amazonia. Consequently, global BVOC estimates are mainly based on modeling studies. Moreover, BVOC emission estimate is altogether lacking for any region of the Indian sub continent. This study attempts to estimate isoprene emission capacity of forest of Haryana state. Individual plant species isoprene emission capacity is found to vary from below detection limit (BDL) to 12.01 mg Cm− 2 h− 1. Maximum emission capacity (12.01 mg Cm− 2 h− 1) is noticed in case of Dalbergia sissoo. The area average isoprene emission capacity for the Haryana forest is found to be 19.98 mg Cm− 2 h− 1, which is significantly (2.4 times) higher than the reported isoprene emission value of 8.2 mg Cm− 2 h− 1 for the Kalahari woodland of Africa.  相似文献   

6.
Particulate matter emissions from stack number 2 of a majorferrochrome smelter, Zimbabwe Mining and Smelting Company(ZIMASCO) were characterized and the rates at which the elementsCr, Fe, Cu and Zn and total ferrochrome dust are emitted into theatmosphere were determined. The extent of soil contamination bythe dust deposited around the smelter in the generally prevailingsoutheasterly wind direction around the smelter was carried out.The highest concentrations of Cr and Fe occurred in the fineparticulates of sizes less than 59 m whilst that of Cu and Znoccurred in the coarse particulates of size range 70-100 m.The emission rates from stack 2 were; total ferrochromeparticulates 62.17 kg h-1, Cr 6.217 kg h-1, Fe 2.423 kg h-1, Zn42 mg h-1 and 6 mg h-1 for Cu. Particulate matter was emitted at arate of 289 mg m-3 from stack number 2. This value exceeds thelegal limit of 200 mg m-3. Chromium and iron are the metalsin the largest amounts. The particles that constitute the largestproportion of the dust were in the range of 58-107.5 m. Thisis a characteristic feature of the particulate matter emissionsfrom ZIMASCO. Soils in the downwind direction from the smelterwere polluted with Cr up to a distance of about 700 m outward fromthe perimeter of the boundary of the smelter.  相似文献   

7.
The concentrations of EC, BC and dust aerosols were determined for atmospheric samples collected from an observation station in Xi'an, China. The results show that the averaged correlation coefficient between EC and BC was founded to be 0.72 with 0.81 (n = 49) in autumn, 0.70 (n = 112) in winter and 0.69 (n = 57) in spring, respectively. Absorption coefficients of dust aerosol were estimated to be 2.7 m2 g−1 in autumn and 4.4 m2 g−1 in winter. The comparison of absorption coefficients of dust aerosol with those of BC implies that BC is the principal light-absorbing aerosol over Xi'an atmosphere. By combining thermal analysis of elemental carbon and dust contents in the aerosol samples, however, the fraction of dust absorption to total light absorption is estimated to be 19% in autumn and 31% in winter, respectively.  相似文献   

8.
Aerosol samples for dry deposition and total suspend particulates (TSP) were collected from August to November of 2003 in central Taiwan. Ion chromatography was used to analyze the related water-soluble ionic species (Cl, NO3 , SO4 2−, Na+, NH4 +, K+, Mg2+ and Ca2+). The results obtained in this study indicated that the ambient air particulate mass concentrations in the daytime period (averaged 975.4 μg m−3) were higher than the nighttime period (averaged 542.1 μg m−3). And the daytime dry deposition fluxes (averaged 58.12 μg m−2 sec−1) were about 2.2 times as that of nighttime dry deposition fluxes (averaged 26.54 μg m−2 sec−1) of the downward dry deposition. The average values downward and upward of dry deposition fluxes for the weekend period were almost higher than the weekday period for either daytime or nighttime period. Furthermore, the average daytime dry deposition fluxes (averaged 26.37 μg m−2 sec−1) were also about 2.3 times as that of nighttime dry deposition fluxes (averaged 11.52 μg m−2 sec−1). Moreover, the results also indicate that SO4 2− and Ca2+ have higher average composition for total suspended particulates in the daytime period while Ca2+, SO4 2−, and Na+ have the higher average composition for total suspends particulates in the nighttime period.  相似文献   

9.
The biologically treated distillery effluent (BTDE) contains intense colour, high total dissolved solids (TDS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). These properties even after primary, secondary and tertiary treatments contain high concentrations of TDS, COD and BOD. The paper highlights the safe disposal and treatment of BTDE on land through High Rate Transpiration System (HRTS). HRTS is a zero discharge, low cost, high-tech method for improving the quality of BTDE for potential reuse. The experiments conducted at bench and pilot scale showed that HRTS having coconut husk as a bedding material could successfully treat the BTDE with a hydraulic load of 200 m3 ha−1 day−1 having BOD of 100 mg l−1 and 500 m3 ha−1 day−1 having BOD of 500 mg l−1 with average COD load of 0.686 and 2.88 ton ha−1 day−1 during the post and pre monsoon periods respectively. There was no significant increase in the organic carbon of the soil irrigated with BTDE. The concentrations of various pollutants analyzed in the leachate were within the prescribed limit for the drinking water sources. The colour removal was 99 to 100% and BOD and COD were possible to treat with optimum hydraulic loading of BTDE through HRTS planted with Dendrocalamus strictus.  相似文献   

10.
An air quality sampling program was designed and implemented to collect the baseline concentrations of respirable suspended particulates (RSP = PM10), non-respirable suspended particulates (NRSP) and fine suspended particulates (FSP = PM2.5). Over a three-week period, a 24-h average concentrations were calculated from the samples collected at an industrial site in Southern Delhi and compared to datasets collected in Satna by Envirotech Limited, Okhla, Delhi in order to establish the characteristic difference in emission patterns. PM2.5, PM10, and total suspended particulates (TSP) concentrations at Satna were 20.5 ± 6.0, 102.1 ± 41.1, and 387.6 ± 222.4 μg m−3 and at Delhi were 126.7 ± 28.6, 268.6 ± 39.1, and 687.7 ± 117.4 μg m−3. Values at Delhi were well above the standard limit for 24-h PM2.5 United States National Ambient Air Quality Standards (USNAAQS; 65 μg m−3), while values at Satna were under the standard limit. Results were compared with various worldwide studies. These comparisons suggest an immediate need for the promulgation of new PM2.5 standards. The position of PM10 in Delhi is drastic and needs an immediate attention. PM10 levels at Delhi were also well above the standard limit for 24-h PM10 National Ambient Air Quality Standards (NAAQS; 150 μg m−3), while levels at Satna remained under the standard limit. PM2.5/PM10 values were also calculated to determine PM2.5 contribution. At Satna, PM2.5 contribution to PM10 was only 20% compared to 47% in Delhi. TSP values at Delhi were well above, while TSP values at Satna were under, the standard limit for 24-h TSP NAAQS (500 μg m−3). At Satna, the PM10 contribution to TSP was only 26% compared to 39% in Delhi. The correlation between PM10, PM2.5, and TSP were also calculated in order to gain an insight to their sources. Both in Satna and in Delhi, none of the sources was dominant a varied pattern of emissions was obtained, showing the presence of heterogeneous emission density and that nonrespirable suspended particulate (NRSP) formed the greatest part of the particulate load.  相似文献   

11.
This study aims to investigate the differences in the concentrations of airborne fungi and pollens between the towns located in the province of Izmir and to determine the factors contributing to these differences. Five stations in each of four towns (Buca, Konak, Bornova, and Karsiyaka) were randomly selected as the research areas. Fungus (cfu/m3) and pollen counts (cm2/pollen count) in the air samples collected from each station between June 2003 and May 2004 were measured. The results revealed that whereas Karsiyaka had the highest fungus concentration (521.33 ± 777.1), Buca and Bornova had the lowest concentration (482.67 ± 308.44). The mean fungus concentration in the province of İzmir was 501.5 ± 486.7. Pollen concentration was the highest in Konak (486.67 ± 839.06) and the lowest in Bornova (369.83 ± 551.13). Fungus and pollen concentrations revealed no difference between the towns (p > 0.05). The relationship between pollen-fungus concentrations and temperature-dust-humidity-sulphurdioxide was investigated but it was found statistically insignificant (p > 0.05). As a result of regression analysis, it was determined that correlation of atmospheric parameters had no effects on pollen and fungus concentrations (p > 0.05).  相似文献   

12.
The activity concentrations of soil samples collected from thirty different locations of Malwa region of Punjab were determined by using HPGe detector based on high-resolution gamma spectrometry system. The range of activity concentrations of 226Ra, 232Th and 40K in the soil from the studied areas varies from 18.37 Bq kg−1 (Sangrur) to 53.11 Bq kg−1 (Sitoguno), 57.28 Bq kg−1 (Dhanola) to 148.28 Bq kg−1 (Sitoguno) and 211.13 Bq kg−1 (Sunam) to 413.27 Bq kg−1 (Virk Khera) with overall mean values of 35 Bq kg−1, 80 Bq kg−1and 317 Bq kg−1 respectively. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 8.47 and 24.48, 35.68 and 92.38, and 8.74 and 17.11 nGy h−1, respectively. The total absorbed dose in the study area ranges from 58.08 nGy h−1 to 130.85 nGy h−1 with an average value of 79.11 nGy h−1. The calculated values of external hazard index (Hex) for the soil samples of the study area range from 0.35 to 0.79. Since these values are lower than unity, therefore, according to the Radiation Protection 112 (European Commission. Radiation Protection 112 1999) report, soil from these regions is safe and can be used as a construction material without posing any significant radiological threat to population.  相似文献   

13.
The aim of this research was to monitor the influent and effluent water quality of the aeration, facultative and oxidation water treatment ponds of an industrial estate. This industrial estate, the largest in northern Thailand, has proposed to utilization of reclaimed treated wastewater in their raw water supply so as to cope with the yearly water shortage during the dry season. Water samples were collected four times from four sampling points and evaluated for their dissolved organic matter (DOM) content in terms of dissolved organic carbon (DOC), ultraviolet light absorbance at 254 nm (UV-254), specific ultraviolet absorption (SUVA), trihalomethane formation potential (THMFP) and trihalomethane (THM) species. Average values of DOC, UV-254, SUVA and THMFP in the influent wastewater of 12.9 mg L−1, 0.165 cm−1, 1.29 L mg−1m−1 and 1.24 mg L−1, respectively, were observed. The aeration ponds produced the best results: a 54% reduction of DOC, a 33% reduction of UV-254, and a 57% reduction of THMFP. However, SUVA in the aeration pond effluent showed a moderate increase. The facultative ponds and oxidation ponds did not take part in the reduction of DOC, UV-254, SUVA and THMFP. Average DOC, UV-254, SUVA and THMFP value of the treated wastewater were 5.8 mg L−1, 0.107 cm−1, 1.85 L mg−1m−1 and 468 μg L−1, respectively. Chloroform, at 72.6% of total THMFP, was found to be the predominant THM species.  相似文献   

14.
Paper industries using different raw materials such as hard wood, bamboo, baggase, rice-straw and waste papers and bleaching chemicals like chlorine, hypochlorite, chlorine dioxide, hydrogen peroxide, sulphite and oxygen were studied to estimate organic pollution load and Adsorbable Organic Halides (AOX) per ton of production. The hard wood based paper industries generate higher Chemical Oxygen Demand (COD) loads (105–182 kg t−1) and Biochemical Oxygen Demand (BOD) loads (32.0–72 kg t−1) compared to the agro and waste paper based industrial effluents. The bleaching sequences such as C–EP–H–H, C–E–H–H, C–E–Do–D1 and O–Do–EOP–D1 are adopted in the paper industries and the molecular elemental chlorine free bleaching sequence discharges low AOX in the effluent. The range of AOX concentration in the final effluent from the paper industries was 0.08–0.99 kg t−1 of production. Water consumption was in the range of 100–130 m3 t−1 of paper production for wood based industries and 30–50 m3 for the waste paper based industries. Paper machine effluents are partially recycled after treatment and pulp mill black liquor are subject to chemical recovery after evaporation to reduce the water consumption and the total pollution loads. Hypochlorite bleaching units of textile bleaching processes generate more AOX (17.2–18.3 mg l−1) and are consuming more water (45–80 l kg−1) whereas alkali peroxide bleaching hardly generates the AOX in the effluents and water consumption was also comparatively less (40 l kg−1 of yarn/cloth).  相似文献   

15.
Waste water pollution of industrial areas can answer for the serious consequences of one of the most important environmental threats to the future. In this study, inductively coupled plasma-atomic emission spectrometry method (ICP-AES) is proposed to determine heavy metals (Pb, Cu, Cd, Cr, Zn, Al, Fe, Ni, Co, Mn) and major elements (Ca, Mg) in waste water of Kocabas Stream. The concentration of metals in the waste water samples taken from 9 different stations (St.) in Biga-Kocabas Stream in November 2004 (autumn period) were determined after simple pretreatment of samples by the proposed ICP-AES method. An analysis of a given sample is completed in about 15 min for ICP-AES the method. The results of heavy metals concentrations in waste water were found between 0.00001–77.69610 mg l−1 by the ICP-AES technique. The concentrations of Pb, Cd, Cu, Zn, Cr, Al, Fe, Mn, Ni, Co, Mg and Ca 0.00001 (St.3,6,7) – 0.0087 mg l−1 (St.9), 0.00001 (St.4-7) – 0.0020 mg l−1 (St.8), 0.00001 (St.1,3-7,9) – 0.0041 mg l−1 (St.2), 0.0620 (St.2) – 0.2080 mg l−1 (St.3), 0.0082 (St.6) – 0.2290 mg l−1 (St.8), 0.3580 (St.2) – 1.7400 mg l−1 (St.3), 0.2240 (St.1) – 0.6790 mg l−1 (St.3), 0.0080 (St.1) – 1.5840 mg l−1 (St.3), 0.0170 (St.3) – 0.0640 mg l−1 (St.2), 0.0010 (St.1,4,5,8) – 0.0080 mg l−1 (St.3), 5.0640 (St.9) – 5.2140 mg l−1 (St.1) and 43.3600 (St.2) – 77.6961 mg l−1 (St.9), respectively. Also we measured environmental physicochemical parameters such as temperature, salinity, specific conductivity, total dissolved solid (TDS), pH, oxidation and reduction potential (ORP), and dissolved oxygen (DO) in the waste water at sampling stations.  相似文献   

16.
The contribution of fugitive dust from traffic to air pollution can no longer be ignored in China. In order to obtain the road dust loadings and to understand the chemical characteristics of PM10 and PM2.5 from typical road dust, different paved roads in eight districts of Beijing were selected for dust collection during the four seasons of 2005. Ninety-eight samples from 28 roads were obtained. The samples were resuspended using equipment assembled to simulate the rising process of road dust caused by the wind or wheels in order to obtain the PM10 and PM2.5 filter samples. The average road dust loading was 3.82 g m − 2, with the highest of 24.22 g m − 2 being in Hutongs in the rural–urban continuum during winter. The road dust loadings on higher-grade roads were lower than those on lower-grade roads. Attention should be paid to the pollution in the rural–urban continuum areas. The sums of element abundances measured were 16.17% and 18.50% for PM10 and PM2.5 in road dust. The average abundances of OC and EC in PM10 and PM2.5 in road dust were 11.52%, 2.01% and 12.50%, 2.06%, respectively. The abundance of elements, water-soluble ions, and OC, EC in PM10 and PM2.5 resuspended from road dust did not change greatly with seasons and road types. The soil dust, construction dust, dust emitted from burning coal, vehicle exhaust, and deposition of particles in the air were the main sources of road dust in Beijing. Affected by the application of snow-melting agents in Beijing during winter, the amount of Cl −  and Na +  was much higher during that time than in the other seasons. This will have a certain influence on roads, bridges, vegetations, and groundwater.  相似文献   

17.
In this study, dry season radon flux densities and radon fluxes have been determined at the rehabilitated Nabarlek uranium mine in northern Australia using conventional charcoal canisters. Environmental background levels amounted to 31± 15 milli Becquerel per m2 per second (mBq m−2 s−1). Radon flux densities within the fenced rehabilitated mine area showed large variations with a maximum of 6500 mBq m−2 s−1 at an area south of the former pit characterised by a disequilibrium between 226Ra and 238U. Radon flux densities were also high above the areas of the former pit (mean 971 mBq m−2 s−1) and waste rock dump (mean 335 mBq m−2 s−1). The lower limit for the total pre-mining radon flux from the fenced area (140 ha) was estimated to 214 kBq s−1, post-mining radon flux amounted to 174 kBq s−1.Our study highlights that the results of radon flux studies are vitally dependant on the selection of individual survey points. We suggest the use of a randomised system for both the selection of survey points and the placement of charcoal canisters at each survey point, to avoid over estimation of radon flux densities. It is also important to emphasize the significance of having reliable pre-mining radiological data available to assess the success of rehabilitation of a uranium mine site.2006 Springer. The Australian Government's right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

18.
The objective of the study is to investigate seasonal and spatial variations of PM10 (particulate matter with aerodynamic diameter less than or equal to 10 μm) and TSP (total suspended particulate matter) of an Indian Metropolis with high pollution and population density from November 2003 to November 2004. Ambient concentration measurements of PM10 and TSP were carried out at two monitoring sites of an urban region of Kolkata. Monitoring sites have been selected based on the dominant activities of the area. Meteorological parameters such as wind speed, wind direction, rainfall, temperature and relative humidity were also collected simultaneously during the sampling period from Indian Meteorological Department, Kolkata. The 24 h average concentrations of PM10 and TSP were found in the range 68.2–280.6 μg/m3 and 139.3–580.3 μg/m3 for residential (Kasba) area, while 62.4–401.2 μg/m3 and 125.7–732.1 μg/m3 for industrial (Cossipore) area, respectively. Winter concentrations of particulate pollutants were higher than other seasons, irrespective of the monitoring sites. It indicates a longer residence time of particulates in the atmosphere during winter due to low winds and low mixing height. Spread of air pollution sources and non-uniform mixing conditions in an urban area often result in spatial variation of pollutant concentrations. The higher particulate pollution at industrial area may be attributed due to resuspension of road dust, soil dust, automobile traffic and nearby industrial emissions. Particle size analysis result shows that PM10 is about 52% of TSP at residential area and 54% at industrial area.  相似文献   

19.
An ambient air quality study was undertaken in two cities (Pamplona and Alsasua) of the Province of Navarre in northern Spain from July 2001 to June 2004. The data were obtained from two urban monitoring sites. At both monitoring sites, ambient levels of ozone, NOx, and SO2 were measured. Simultaneously with levels of PM10 measured at Alsasua (using a laser particle counter), PM10 levels were also determined at Pamplona (using a beta attenuation monitor). Mean annual PM10 concentrations in Pamplona and Alsasua reached 30 and 28 μg m−3, respectively. These concentrations are typical for urban background sites in Northern Spain. By using meteorological information and back trajectories, it was found that the number of exceedances of the daily PM10 limit as well as the PM10 temporal variation was highly influenced by air masses from North Africa. Although North African transport was observed on only 9% of the days, it contributed the highest observed PM10 levels. Transport from the Atlantic Ocean was observed on 68% of the days; transport from Europe on 13%; low transport and local influences on 7%; and transport from the Mediterranean region on 3% of the days. The mean O3 concentrations were 45 and 55 μg m−3 in Pamplona and Alsasua, respectively, which were above the values reported for the main Spanish cities. The mean NO and NO2 levels were very similar in both sites (12 and 26 μg m−3, respectively). Mean SO2 levels were 8 μg m−3 in Pamplona and 5 μg m−3 in Alsasua. Hourly levels of PM10, NO and NO2 showed similar variations with the typically two coincident maximums during traffic rush hours demonstrating a major anthropogenic origin of PM10, in spite of the sporadic dust outbreaks.  相似文献   

20.
Ambient aerosols were collected during 2000–2001 in Gainesville, Florida, using a micro-orifice uniform deposit impactor (MOUDI) to study mass size distribution and carbon composition. A bimodal mass distribution was found in every sample with major peaks for aerosols ranging from 0.32 to 0.56 μm, and 3.2 to 5.6 μm in diameter. The two distributions represent the fine mode (<2.5 μm) and the coarse mode (>2.5 μm) of particle size. Averaged over all sites and seasons, coarse particles consisted of 15% carbon while fine particles consisted of 22% carbon. Considerable variation was noted between winter and summer seasons. Smoke from fireplaces in winter appeared to be an important factor for the carbon, especially the elemental carbon contribution. In summer, organic carbon was more abundant. The maximum secondary organic carbon was also found in this season (7.0 μg m−3), and the concentration is between those observed in urban areas (15–20 μg m−3) and in rural areas (4–5 μg m−3). However, unlike in large cities where photochemical activity of anthropogenic emissions are determinants of carbon composition, biogenic sources were likely the key factor in Gainesville. Other critical factors that affect the distribution, shape and concentration were precipitation, brushfire and wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号