首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The loss of phosphorus (P) in runoff from agricultural soils may accelerate eutrophication in lakes and streams as well as degrade surface water quality. Limited soil specific data exist on the relationship between runoff P and soil P. This study investigated the relationship between runoff dissolved reactive phosphorus (DRP) and soil P for three Oklahoma benchmark soils: Richfield (fine, smectitic, mesic Aridic Argiustoll), Dennis (fine, mixed, active, thermic Aquic Argiudoll), and Kirkland (fine, mixed, superactive, thermic Udertic Paleustoll) series. These soils were selected to represent the most important agricultural soils in Oklahoma across three major land resource areas. Surface soil (0-15 cm) was collected from three designated locations, treated with diammonium phosphate (18-46-0) to establish a wide range of water-soluble phosphorus (WSP) (3.15-230 mg kg(-1)) and Mehlich-3 phosphorus (M3P) (27.8-925 mg kg(-1)). Amended soils were allowed to reach a steady state 210 d before simulated rainfall (75 mm h(-1)). Runoff was collected for 30 min from bare soil boxes (1.0 x 0.42 m and 5% slope) and analyzed for DRP and total P. Soil samples collected immediately before rainfall simulation were analyzed for the following: M3P, WSP, ammonium oxalate P saturation index (PSI(ox)), water-soluble phosphorus saturation index (PSI(WSP)), and phosphorus saturation index calculated from M3P and phosphorus sorption maxima (P(sat)). The DRP in runoff was highly related (p < 0.001) to M3P for individual soil series (r2 > 0.92). Highly significant relationships (p < 0.001) were found between runoff DRP and soil WSP for the individual soil series (r2 > 0.88). Highly significant relationships (p < 0.001) existed between DRP and different P saturation indexes. Significant differences (p < 0.05) among the slopes of the regressions for the DRP-M3P, DRP-WSP, DRP-PSI(ox), DRP-PSI(WSP), and DRP-P(sat) relationships indicate that the relationships are soil specific and phosphorus management decisions should consider soil characteristics.  相似文献   

2.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

3.
Phosphorus application in excess of crop needs has increased the concentration of P in surface soil and runoff and led many states to develop P-based nutrient management strategies. However, insufficient data are available relating P in surface soil, surface runoff, and subsurface drainage to develop sound guidelines. Thus, we investigated P release from the surface (0-5 cm depth) of a Denbigh silt loam from Devon, U.K. (30-160 mg kg-1 Olsen P) and Alvin, Berks, Calvin, and Watson soils from Pennsylvania (10-763 mg kg-1 Mehlich-3 P) in relation to the concentration of P in surface runoff and subsurface drainage. A change point, where the slopes of two linear relationships between water- or CaCl2-extractable soil P and soil test phosphorus (STP) (Olsen or Mehlich-3) meet, was evident for the Denbigh at 33 to 36 mg kg-1 Olsen P, and the Alvin and Berks soils at 185 to 190 mg Mehlich-3 P kg-1. Similar change points were also observed when STP was related to the P concentration of surface runoff (185 mg kg-1) and subsurface drainage (193 mg kg-1). The use of water and CaCl2 extraction of surface soil is suggested to estimate surface runoff P (r2 of 0.92 for UK and 0.86 for PA soils) and subsurface drainage P (r2 of 0.82 for UK and 0.88 for PA soils), and to determine a change point in STP, which may be used in support of agricultural and environmental P management.  相似文献   

4.
Phosphorus losses from agricultural land can cause accelerated eutrophication of surface water bodies. This study evaluated the use of soil test phosphorus (STP) levels to predict dissolved inorganic phosphorus (DIP) concentrations in runoff water from agricultural soils using laboratory rainfall simulation. The objectives of this study were to determine (i) to what extent STP concentrations can be used as a basis to predict P losses from Alberta soils and (ii) how extended rainfall simulation run times affected DIP losses. Soil samples collected from a total of 38 field sites, widely scattered throughout the southern half of Alberta, were subjected to rainfall simulation in the laboratory. The STP concentrations were determined using Miller-Axley, Norwest, Kelowna, Modified Kelowna Mehlich-III, and distilled water extraction methods. Each rainfall simulation event lasted for at least 90 min. Runoff samples were collected in time series for the duration of each simulation, during two distinct runoff intervals: (i) for the first 30 min of continuous runoff (T30) and (ii) for 40 min during runoff equilibrium (Teq). For all the STP extractants and both runoff intervals, the relationship with DIP-flow-weighted mean concentration (FWMC) was linear and highly significant with r2 values ranging from 0.74 to 0.96. However, the slopes of the resulting regression lines were, on average, 1.85 times greater for the T30 runoff interval over those computed for the Teq interval. Thus experimental methodology greatly influenced regression parameters, suggesting that more work was needed to verify these relationships under natural conditions. In addition, with many of the r2 values greater than 0.90 there would be little, if any, benefit derived by including soil properties in regression analysis.  相似文献   

5.
Excessively high soil P can increase P loss with surface runoff. This study used indoor rainfall simulations to characterize soil and runoff P relationships for five Midwest soils (Argiudoll, Calciaquaoll, Hapludalf, and two Hapludolls). Topsoil (15-cm depth, 241-289 g clay kg(-1) and pH 6.0-8.0) was incubated with five NH4H2PO4 rates (0-600 mg P kg(-1)) for 30 d. Total soil P (TPS) and soil-test P (STP) measured with Bray-P1 (BP), Mehlich-3 (M3P), Olsen (OP), Fe-oxide-impregnated paper (FeP), and water (WP) tests were 370 to 1360, 3 to 530, 10 to 675, 4 to 640, 7 to 507, and 2 to 568 mg P kg(-1), respectively. Degree of soil P saturation (DPS) was estimated by indices based on P sorption index (PSI) and STP (DPSSTP) and P, Fe, and Al extracted by ammonium oxalate (DPSox) or Mehlich-3 (DPSM3). Soil was packed to 1.1 g cm(-3) bulk density in triplicate boxes set at 4% slope. Surface runoff was collected during 75 min of 6.5 cm h(-1) rain. Runoff bioavailable P (BAP) and dissolved reactive P (DRP) increased linearly with increased P rate, STP, DPSox, and DPSM3 but curvilinearly with DPSSTP. Correlations between DRP or BAP and soil tests or saturation indices across soils were greatest (r > or = 0.95) for FeP, OP, and WP and poorest for BP and TPS (r = 0.83-0.88). Excluding the calcareous soil (Calciaquoll) significantly improved correlations only for BP. Differences in relationships between runoff P and the soil tests were small or nonexistent among the noncalcareous soils. Routine soil P tests can estimate relationships between runoff P concentration and P application or soil P, although estimates would be improved by separate calibrations for calcareous and noncalcareous soils.  相似文献   

6.
Colloid-facilitated phosphorus (P) delivery from agricultural soils in different hydrological pathways was investigated using a series of laboratory and field experiments. A soil colloidal P test was developed that yields information on the propensity of different soils to release P attached to soil colloids. The relationship between turbidity of soil extracts and total phosphorus (TP) was significant (r2 = 0.996, p < 0.001) across a range of agricultural soils, and a strong positive relationship (r2 = 0.86, p < 0.001) was found between "colloidal P" (H2O-CaCl2 extracts) and turbidity. Linear regression of the proportion of fine clay (<2 microm) for each soil type evaluated against the (H2O-CaCl2) colloidal P fraction gave a weak but positive relationship (r2 = 0.38, p = 0.082). The relative contribution of different particle-size fractions in transporting P in agricultural runoff from grassland soils was evaluated using a randomized plot experiment. A significant difference (p = 0.05) in both TP and reactive phosphorus (RP) in subsurface flow was recorded for different particle-size fractions, with most TP transferred either in association with the 2-microm fraction or with the 0.001-microm or smaller fractions. Total P concentrations in runoff were higher from plots receiving P amendments compared with the zero-P plots; however, these differences were only significant for the >0.45-microm particle-size fractions (p = 0.05), and may be evidence of surface applications of organic and inorganic fertilizers being transferred through the soil either as intact organic colloids or attached to mineral particles. Our results highlight the potential for drainage water to mobilize colloids and associated P during rainfall events.  相似文献   

7.
The accumulation of P in agricultural soils due to fertilization has increased the risk of P losses from agricultural fields to surface waters. In risk assessment systems for P losses, both P release from soil to solution and transport mechanisms need to be considered. In this study, the overall objective was to identify soil variables for prediction of potential P release from soil to solution. Soils from nine sites of the Swedish long-term fertility experiment were used, each with four soil P levels. Phosphorus extractable with CaCl2 was used as an estimate of potential P release from soil to solution. Ammonium lactate-extractable phosphorus (P-AL) or NaHCO3-extractable phosphorus (Olsen P) could not be used alone for prediction of potential P release since soils with high phosphorus sorption capacity (PSC) released less P than soils with low PSC at the same soil test phosphorus (STP) level. Degree of phosphorus saturation (DPS) was calculated as Olsen P or P-AL as a percentage of PSC derived from P sorption isotherms or from Fe and Al extractable in ammonium oxalate. The CaCl2-extractable total phosphorus (CaCl2-TP) was exponentially related to these DPS values (r2 > or = 0.79). The CaCl2-TP was also linearly related to ratios between Olsen P or P-AL and a single-point phosphorus sorption index (PSI; r2 > or = 0.86). These ratios, which are easily determined and gave good correlations with CaCl2-TP, seemed to be the most useful estimates of potential P release for risk assessment systems.  相似文献   

8.
Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.  相似文献   

9.
Phosphorus (P) loss from agricultural land in surface runoff can contribute to eutrophication of surface water. This study was conducted to evaluate a range of environmental and agronomic soil P tests as indicators of potential soil surface runoff dissolved reactive P (DRP) losses from Ontario soils. The soil samples (0- to 20-cm depth) were collected from six soil series in Ontario, with 10 sites each to provide a wide range of soil test P (STP) values. Rainfall simulation studies were conducted following the USEPA National P Research Project protocol. The average DRP concentration (DRP30) in runoff water collected over 30 min after the start of runoff increased (p < 0.001) in either a linear or curvilinear manner with increases in levels of various STPs and estimates of degree of soil P saturation (DPS). Among the 16 measurements of STPs and DPSs assessed, DPS(M3) 2 (Mehlich-3 P/[Mehlich-3 Al + Fe]) (r2 = 0.90), DPS(M3)-3 (Mehlich-3 P/Mehlich-3 Al) (r2 = 0.89), and water-extractable P (WEP) (r2 = 0.89) had the strongest overall relationship with runoff DRP30 across all six soil series. The DPS(M3)-2 and DPS(M3)-3 were equally accurate in predicting runoff DRP30 loss. However, DPS(M3)-3 was preferred as its prediction of DRP30 was soil pH insensitive and simpler in analytical procedure, ifa DPS approach is adopted.  相似文献   

10.
Contribution of particulate phosphorus to runoff phosphorus bioavailability   总被引:1,自引:0,他引:1  
Runoff P associated with eroded soil is partly solubilized in receiving waters and contributes to eutrophication, but the significance of particulate phosphorus (PP) in the eutrophying P load is debatable. We assessed losses of bioavailable P fractions in field runoff from fine-textured soils (Cryaquepts). Surface runoff at four sites and drain-flow at two of them was sampled. In addition to dissolved molybdate-reactive phosphorus (DRP) losses, two estimates of bioavailable PP losses were made: (i) desorbable PP, assessed by anion exchange resin-extraction (AER-PP) and (ii) redox-sensitive PP, assessed by extraction with bicarbonate and dithionite (BD-PP). Annual losses of BD-PP and AER-PP were derived from the relationships (R2 = 0.77-0.96) between PP and these P forms. Losses of BD-PP in surface runoff (94-1340 g ha(-1)) were typically threefold to fivefold those of DRP (29-510 kg ha(-1)) or AER-PP (13-270 g ha(-1)). Where monitored, drainflow P losses were substantial, at one of the sites even far greater than those via the surface pathway. Typical runoff DRP concentration at the site with the highest Olsen-P status (69-82 mg kg(-1)) was about 10-fold that at the site with the lowest Olsen P (31-45 mg kg(-1)), whereas the difference in AER-PP per mass unit of sediment was only threefold, and that of BD-PP 2.5-fold. Bioavailable P losses were greatly influenced by PP runoff, especially so on soils with a moderate P status that produced runoff with a relatively low DRP concentration.  相似文献   

11.
Soil phosphorus (P) concentrations typically are greater in surface soils compared with subsurface soils. Surface soils have a greater chance to interact with runoff leading to P transport to streams. The thin surface layer where P concentrates is referred to as the mixing layer denoting where water and chemicals mix during transport. The objective of this study was to evaluate the effect of hydrologic flow paths on soluble reactive phosphorus (SRP) loss at two temperatures. Laboratory flumes were built to simulate infiltration, return flow, saturation excess, and interflow, and subsequent interaction with the mixing layer. The sandy loam soil in the flumes was kept at saturation throughout all experiments, so that biochemical effects were normalized. Flow through the flumes was maintained at 3.6 mm/h for 24 to 99 h (at 6 and 25 degrees C) with water entering and exiting the flumes at different ports (to simulate different flow paths) or as low intensity rainfall. Experiments were performed with and without an artificially created P-enriched surface layer (5 mm thick, total P increased from 1010 mg/kg in the original soil to 2310 mg/kg by addition of dissolved phosphate). Results indicated that (i) SRP release was greater in soil with a mixing layer than in soil without a mixing layer; (ii) SRP release was greater during experiments at 25 degrees C than at 6 degrees C; (iii) at 25 degrees C, SRP release was greatest when water traversed the mixing layer in the upward direction (i.e., in return flow), and by flow parallel to the mixing layer (i.e., surface runoff); and (iv) at 6 degrees C, SRP release in subsurface flow following rainfall was slightly greater than in return flow and infiltration. Our results confirmed the presence of a variable, temperature-dependent desorption process when runoff water interacted with the mixing layer. Our findings have important implications for how different water flow paths in and over the soil interact with P in the soil, and what the ultimate concentration will be in runoff and interflow.  相似文献   

12.
Incorporating applied phosphorus (P) sources can reduce P runoff losses and is a recommended best management practice. However, in soils with low P retention capacities, leaching can be a major mechanism for off-site P loss, and the P-source application method (surface or incorporation) may not significantly affect the total amount of off-site P loss. We utilized simulated rainfall protocols to investigate effects of P-source characteristics and application methods on the forms and amounts of P losses from six P sources, including five biosolids materials produced and/or marketed in Florida, and one inorganic fertilizer (triple superphosphate). A typical Florida Spodosol (Immokalee fine sand; sandy, siliceous, hyperthermic Arenic Alaquods) was used for the study, to which the P sources were each applied at a rate of 224 kg P ha(-1) (approximately the P rate associated with N-based biosolids applications). The P sources were either surface-applied to the soil or incorporated into the soil to a depth of 5 cm. Amended soils were subjected to three simulated rainfall events, at 1-d intervals. Runoff and leachate were collected after each rainfall event and analyzed for P losses in the form of soluble reactive P (SRP), total dissolved P (TDP), total P (TP), and bioavailable P (BAP) (in runoff only). Cumulative masses (runoff + leachate for the three rainfall events) of P losses from all the P sources were similar, whether the amendments were surface-applied or incorporated into the soil. The solubility of the amendment, rather than application method, largely determines the P loss potential in poorly P-sorbing Florida Spodosols.  相似文献   

13.
Florida Spodosols are sandy, inherently low in Fe- and Al-based minerals, and sorb phosphorus (P) poorly. We evaluated runoff and leachate P losses from a typical Florida Spodosol amended with biosolids and triple superphosphate (TSP). Phosphorus losses were evaluated with traditional indoor rainfall simulations but used a double-deck box arrangement that allowed leaching and runoff to be determined simultaneously. Biosolids (Lakeland, OCUD, Milorganite, and Disney) represented contrasting values of total P, percent water-extractable P (PWEP), and percentage of solids. All P sources were surface applied at 224 kg P ha(-1), representing a soil P rate typical of N-based biosolids application. All biosolids-P sources lost less P than TSP, and leachate-P losses generally dominated. For Lakeland-amended soil, bioavailable P (BAP) was mainly lost by runoff (81% of total BAP losses). This behavior was due to surface sealing and drying after application of the slurry (31 g kg(-1) solids) material. For all other P sources, BAP losses in leachate were much greater than in runoff, representing 94% of total BAP losses for TSP, 80% for Milorganite, 72% for Disney, and 69% for OCUD treatments. Phosphorus leaching can be extreme and represents a great concern in many coarse-textured Florida Spodosols and other coastal plain soils with low P-sorption capacities. The PWEP values of P sources were significantly correlated with total P and BAP losses in runoff and leachate. The PWEP of a source can serve as a good indicator of potential P loss when amended to sandy soils with low P-retention capacities.  相似文献   

14.
Dairy manure application to soils can result in phosphorus (P)-related degradation of water quality. The P in these manure-impacted soils can be labile even years after abandonment and under conditions normally associated with high P stability. Failure of P to stabilize with time compounds the environmental consequences of dairy manure disposal, especially on sandy soils. The objectives of this study were to compare chemical characteristics of active and abandoned dairy manure-impacted soils and minimally impacted soils and to assess the continuous release of P in relation to sparingly soluble salts using repeated water extractions, X-ray diffraction, and speciation modeling of column leachates. Soil samples from Ap horizons were collected from nine highly manure-impacted (total P > 1000 mg P kg(-1) soil) areas on four active and five abandoned dairies and four minimally impacted soils (total P < 200 mg P kg(-1) soil). Soil extracts were analyzed for electrical conductivity (EC), soluble reactive phosphorus (SRP), Ca, Mg, Na, and K. The EC of the soil solutions decreased as active dairy > abandoned dairy > minimally impacted soils. Release of Mg and SRP were significantly correlated (r2 = 0.68) and did not decline after abandonment; Ca release was not correlated with SRP (r2 = 0.01), and declined significantly (p < 0.05) after abandonment. Speciation data from column leachates suggested that Mg-P phases and/or the most soluble Ca-P phases could control P solution activities. An implication of this study is that P stabilization via crystallization of calcium phosphates (even at near-neutral pH) may be preempted by Mg-P association. Thus, mechanisms to minimize P release may require P-retaining soil amendments or management of animal rations to eliminate Mg-P formation.  相似文献   

15.
Concern over eutrophication has directed attention to manure management effects on phosphorus (P) loss in runoff. This study evaluates the effects of manure application rate and type on runoff P concentrations from two, acidic agricultural soils over successive runoff events. Soils were packed into 100- x 20- x 5-cm runoff boxes and broadcast with three manures (dairy, Bos taurus, layer poultry, Gallus gallus; swine, Sus scrofa) at six rates, from 0 to 150 kg total phosphorus (TP) ha(-1). Simulated rainfall (70 mm h(-1)) was applied until 30 min of runoff was collected 3, 10, and 24 d after manure application. Application rate was related to runoff P (r2 = 0.50-0.98), due to increased concentrations of dissolved reactive phosphorus (DRP) in runoff; as application rate increased, so did the contribution of DRP to runoff TP. Varied concentrations of water-extractable phosphorus (WEP) in manures (2-8 g WEP kg(-1)) resulted in significantly lower DRP concentrations in runoff from dairy manure treatments (0.4-2.2 mg DRP L(-1)) than from poultry (0.3-32.5 mg DRP L(-1)) and swine manure treatments (0.3-22.7 mg DRP L(-1)). Differences in runoff DRP concentrations related to manure type and application rate were diminished by repeated rainfall events, probably as a result of manure P translocation into the soil and removal of applied P by runoff. Differential erosion of broadcast manure caused significant differences in runoff TP concentrations between soils. Results highlight the important, but transient, role of soluble P in manure on runoff P, and point to the interactive effects of management and soils on runoff P losses.  相似文献   

16.
Excessive fertilizer and manure phosphorus (P) inputs to soils elevates P in soil solution and surface runoff, which can lead to freshwater eutrophication. Runoff P can be related to soil test P and P sorption saturation, but these approaches are restricted to a limited range of soil types or are difficult to determine on a routine basis. The purpose of this study was to determine whether easily measurable soil characteristics were related to the soil phosphorus requirements (P(req), the amount of P sorbed at a particular solution P level). The P(req) was determined for 18 chemically diverse soils from sorption isotherm data (corrected for native sorbed P) and was found to be highly correlated to the sum of oxalate-extractable Al and Fe (R2 > 0.90). Native sorbed P, also determined from oxalate extraction, was subtracted from the P(req) to determine soil phosphorus limits (PL, the amount of P that can be added to soil to reach P(req)). Using this approach, the PL to reach 0.2 mg P L(-1) in solution ranged between -92 and 253 mg P kg(-1). Negative values identified soils with surplus P, while positive values showed soils with P deficiency. The results showed that P, Al, and Fe in oxalate extracts of soils held promise for determining PL to reach up to 10 mg P L(-1) in solution (leading to potential runoff from many soils). The soil oxalate extraction test could be integrated into existing best management practices for improving soil fertility and protecting water quality.  相似文献   

17.
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff.  相似文献   

18.
Phosphorus loss in runoff from agricultural fields has been identified as an important contributor to eutrophication. The objective of this research was to determine the relationship between phosphorus (P) in runoff from a benchmark soil (Cecil sandy loam; fine, kaolinitic, thermic Typic Kanhapludult) and Mehlich III-, deionized water-, and Fe(2)O(3)-extractable soil P, and degree of phosphorus saturation (DPS). Additionally, the value of including other soil properties in P loss prediction equations was evaluated. Simulated rainfall was applied (75 mm h(-1)) to 54 1-m(2) plots installed on six fields with different soil test phosphorus (STP) levels. Runoff was collected in its entirety for 30 min and analyzed for total P and dissolved reactive phosphorus (DRP). Soil samples were collected from 0- to 2-, 0- to 5-, and 0- to 10-cm depths. The strongest correlation for total P and DRP occurred with DPS (r(2) = 0.72). Normalizing DRP by runoff depth resulted in improved correlation with deionized water-extractable P for the 0- to 10-cm sampling depth (r(2) = 0.81). The STP levels were not different among sampling depths and analysis of the regression equations revealed that soil sampling depth had no effect on the relationship between STP and P in runoff. For all forms of P in runoff and STP measures, the relationship between STP and runoff P was much stronger when the data were split into groups based on the ratio of oxalate-extractable Fe to Al. For all forms of P in runoff and all STP methods, R(2) increased with the inclusion of oxalate-extractable Al and Fe in the regression equation. The results of this study indicate that inclusion of site-specific information about soil Al and Fe content can improve the relationship between STP and runoff P.  相似文献   

19.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

20.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号