首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Although attempts to improve the quality of the Great Lakes generally focus on chemical pollution, other factors are important and should be considered Ecological factors, such as invasion of the lakes by foreign species, habitat changes, overfishing, and random variations in organism populations, are especially influential. Lack of appreciation of the significance of ecological factors stems partly from the inappropriate application of the concept of eutrophication to the Great Lakes. Emphasis on ecological factors is not intended to diminish the seriousness of pollution, but rather to point out that more cost-effective management, as well as more realistic expectations of management efforts by the public, should result from an ecosystem management approach in which ecological factors are carefully considered.  相似文献   

2.
Understanding flood and erosion hazards in the context of developing coastal management plans requires an appreciation for variations in climate, geology, vegetation, land uses, human activities and institutional arrangements. On the Great Lakes, fluctuating water levels are characterized by temporal variations in their magnitude and frequency and their impact on flooding and erosion also differ from site to site. The traditional planning and management mechanisms in Ontario, through the use of emergency responses and land use setbacks, have been insufficient in resolving the rising costs of damage to property due to flooding and erosion along the Great Lakes shoreline. There is a need to develop an alternative management model with a focus on understanding hazards in the context of their natural and human components. A case study of the preparation of a resource survey for the Saugeen Valley Conservation Authority illustrates the development of a human ecological approach and its applicability in developing shoreline management plans for the Great Lakes.  相似文献   

3.
A total of 154 aquatic alien species have invaded the New York State Canal and Hudson River systems and a total of 162 aquatic species have invaded the Great Lakes Basin. Some of these invasive species are causing significant damage and control costs in both aquatic ecosystems. In the New York State Canal and Hudson River systems, the nonindigenous species are causing an estimated 500 million dollars in economic losses each year. The economic and environmental situation in the Great Lakes Basin is far more serious from nonindigenous species, with losses estimated to be about 5.7 billion dollars per year. Commercial and sport fishing suffer the most from the biological invasions, with about 400 million dollars in losses reported for the New York State Canal and Hudson River systems and 4.5 billion dollars in losses reported for the Great Lakes Basin.  相似文献   

4.
Relative cancer risks of chemical contaminants in the great lakes   总被引:1,自引:0,他引:1  
Anyone who drinks water or eats fish from the Great Lakes consumes potentially carcinogenic chemicals. In choosing how to respond to such pollution, it is important to put the risks these contaminants pose in perspective. Based on recent measurements of carcinogens in Great Lakes fish and water, calculations of lifetime risks of cancer indicate that consumers of sport fish face cancer risks from Great Lakes contaminants that are several orders of magnitude higher than the risks posed by drinking Great Lakes water. But drinking urban groundwater and breathing urban air may be as hazardous as frequent consumption of sport fish from the Great Lakes. Making such comparisons is difficult because of variation in types and quality of information available and in the methods for estimating risk. Much uncertainty pervades the risk assessment process in such areas as estimating carcinogenic potency and human exposure to contaminants. If risk assessment is to be made more useful, it is important to quantify this uncertainty.  相似文献   

5.
ABSTRACT: Global climate change is examined from the perspective of its relevancy and urgency as a public policy issue. Interpreting from literature specific to investigations into public awareness and concern, climate change is seen as a legitimate though less than urgent issue. The literature reveals that the general public holds surprising misconceptions about the processes contributing to climate change, including failure to grasp the fundamental connection to CO2. General ambivalence is also suggested from the results of two surveys conducted by The Groundwater Foundation. They first asked participants in a recent Groundwater Guardian Conference to rate levels of discussion and concern for water resources implications in the participants' communities. A second survey polled national water resource organizations about the extent climate change has been a focus of their educational, investigative, or advocacy efforts. The paper concludes by describing basic barriers to stimulating public response to climate change, which education about the issue should address, and by offering a model to educate and involve citizens based on the Groundwater Guardian program developed by the The Groundwater Foundation.  相似文献   

6.
Brown, Casey, William Werick, Wendy Leger, and David Fay, 2011. A Decision‐Analytic Approach to Managing Climate Risks: Application to the Upper Great Lakes. Journal of the American Water Resources Association (JAWRA) 47(3):524‐534. DOI: 10.1111/j.1752‐1688.2011.00552.x Abstract: In this paper, we present a risk analysis and management process designed for use in water resources planning and management under climate change. The process incorporates climate information through a method called decision‐scaling, whereby information related to climate projections is tailored for use in a decision‐analytic framework. The climate risk management process begins with the identification of vulnerabilities by asking stakeholders and resource experts what water conditions they could cope with and which would require substantial policy or investment shifts. The identified vulnerabilities and thresholds are formalized with a water resources systems model that relates changes in the physical climate conditions to the performance metrics corresponding to vulnerabilities. The irreducible uncertainty of climate change projections is addressed through a dynamic management plan embedded within an adaptive management process. Implementation of the process is described as applied in the ongoing International Upper Great Lakes Study.  相似文献   

7.
Development of plans to restore degraded areas in the Great Lakes   总被引:3,自引:0,他引:3  
The International Joint Commission's Water Quality Board has identified 42 Areas of Concern in the Great Lakes ecosystem where Great Lakes Water Quality Agreement objectives or jurisdictional standards, criteria or guidelines, established to protect uses, have been exceeded and remedial actions are necessary to restore beneficial uses. As a result of the 1985 report of the Water Quality Board, the eight Great Lakes states and the Province of Ontario committed themselves to developing a remedial action plan (RAP) to restore all uses in each Area of Concern within their political boundaries. Each RAP must identify the specific measures necessary to control existing sources of pollution, abate existing contamination (e.g., contaminated sediments), and restore all beneficial uses. Points which must be explicitly addressed in each RAP include: geographic extent of problem, beneficial uses impaired, causes of problems, remedial measures and a schedule for implementation, responsible agencies, and surveillance and monitoring activities that will be used to track effectiveness of remedial actions. The jurisdictions are responsible for developing RAPs, and the International Joint Commission is responsible for evaluating the adequacy of each RAP and tracking progress in restoring beneficial uses.  相似文献   

8.
ABSTRACT: In two workshops, we evaluated decision analysis methods for comparing Lake Erie levels management alternatives under climate change uncertainty. In particular, we wanted to see how acceptable and effective those methods could be in a public planning setting. The methods evaluated included simulation modeling, scenario analysis, decision trees and structured group discussions. We evaluated the methods by interviewing the workshop participants before and after the workshops. The participants, who were experienced Great Lakes water resources managers, concluded that simulation modeling is user-friendly enough to enable scenario analysis even in workshop settings for large public planning studies. They felt that simulation modeling can improve not only understanding of the system, but also of the options for managing it. Scenario analysis revealed that the decision for the case study, Lake Erie water level regulation, could be altered by the likelihood of climate change. The participants also recommended that structured group discussions be used in public planning settings to elicit ideas and opinions. On the other hand, the participants were less optimistic about decision trees because they felt that the public might view subjective probabilities as difficult to understand and subject to manipulation.  相似文献   

9.
In accordance with the Great Lakes Water Quality agreement and the Great Lakes Critical Protections Act, the Great Lakes States have developed (or are developing) remedial action plans (RAPs) for severely degraded areas of concern (AOCs). To provide citizen input into the planning process, state environmental agencies have established citizens' advisory groups (CAGs) for each AOC. These CAGs have been hailed as the key to RAP success, yet little is known about their role in the planning process. In this paper, we examine the constitution, organization and activities of CAGs in three Lake Michigan AOCs by comparing CAGs to municipal planning commissions, citizen advisory commissions and councils of government. We find that CAGs, like other advisory bodies, can provide public input into the planning process, foster communication between government agencies and special interest groups, and facilitate intergovernmental co-ordination. Also like other advisory bodies, however, CAGs can fail to represent all constituencies in the AOCs, have limited influence on agencies plans and activities, and lack the authority to assure the co-operation of local governments.  相似文献   

10.
ABSTRACT: This paper reports on the current assessment of climate impacts on water resources, including aquatic ecosystems, agricultural demands, and water management, in the U.S. Great Plains. Climate change in the region may have profound effects on agricultural users, aquatic ecosystems, and urban and industrial users alike. In the central Great Plains Region, the potential impacts of climate changes include changes in winter snowfall and snow-melt, growing season rainfall amounts and intensities, minimum winter temperature, and summer time average temperature. Specifically, results from general circulation models indicate that both annual average temperatures and total annual precipitation will increase over the region. However, the seasonal patterns are not uniform. The combined effect of these changes in weather patterns and average seasonal climate will affect numerous sectors critical to the economic, social and ecological welfare of this region. Research is needed to better address the current competition among the water needs of agriculture, urban and industrial uses, and natural ecosystems, and then to look at potential changes. These diverse demands on water needs in this region compound the difficulty in managing water use and projecting the impact of climate changes among the various critical sectors in this region.  相似文献   

11.
ABSTRACT: Growing interest in agricultural irrigation in the Great Lakes basin presents an increasing competition to other uses of Great Lakes water. This paper, through a case study of the Mud Creek Irrigation District in the Saginaw Bay basin, Michigan, evaluates the potential hydrologic effects of withdrawing water for agricultural irrigation to the Great Lakes. Crop growth simulation models for corn, soybeans, dry beans, and the FAO Penman method were used to estimate the difference in evapotranspiration rates between irrigated and nonirrigated identical crops, based on climate, soil, and management data. The simulated results indicate that an additional 70–120 mm of water would be evapotranspirated during the growing season from irrigated crop fields as compared to nonirrigated identical plantings. Dependent upon the magnitude of irrigation expansion, an equivalent of about 1 to 5 mm of water from Lakes Huron-Michigan could be lost to the atmosphere. If agricultural irrigation further expands in the entire Great Lakes basin, the aggregated potential of water loss to the atmosphere through ET from all five Great Lakes would be even greater.  相似文献   

12.
As complex social phenomena, public involvement processes are influenced by contextual factors. This study examined agency goals for public involvement and assessed the importance of local context in remedial action planning, a community-based water resources program aimed at the cleanup of the 42 most polluted locations in the Great Lakes Basin. Agency goals for public involvement in remedial action plans (RAPs) were agency-oriented and focused on public acceptance of the plan, support for implementation, and positive agency-public relations. Corresponding to these goals, citizen advisory committees were created in 75% of the RAP sites as a primary means for public input into the planning process. Factors that influenced the implementation of public involvement programs in remedial action planning included public orientation toward the remediation issue, local economic conditions, the interaction of diverse interests in the process, agency and process credibility, experience of local leadership, and jurisdictional complexity. A formative assessment of “community readiness” appeared critical to appropriate public involvement program design. Careful program design may also include citizen education and training components, thoughtful management of ongoing agency-public relations and conflict among disparate interests in the process, overcoming logistical difficulties that threaten program continuity, using local expertise and communication channels, and circumventing interjurisdictional complexities.  相似文献   

13.
Climate change affects public land ecosystems and services throughout the American West and these effects are projected to intensify. Even if greenhouse gas emissions are reduced, adaptation strategies for public lands are needed to reduce anthropogenic stressors of terrestrial and aquatic ecosystems and to help native species and ecosystems survive in an altered environment. Historical and contemporary livestock production—the most widespread and long-running commercial use of public lands—can alter vegetation, soils, hydrology, and wildlife species composition and abundances in ways that exacerbate the effects of climate change on these resources. Excess abundance of native ungulates (e.g., deer or elk) and feral horses and burros add to these impacts. Although many of these consequences have been studied for decades, the ongoing and impending effects of ungulates in a changing climate require new management strategies for limiting their threats to the long-term supply of ecosystem services on public lands. Removing or reducing livestock across large areas of public land would alleviate a widely recognized and long-term stressor and make these lands less susceptible to the effects of climate change. Where livestock use continues, or where significant densities of wild or feral ungulates occur, management should carefully document the ecological, social, and economic consequences (both costs and benefits) to better ensure management that minimizes ungulate impacts to plant and animal communities, soils, and water resources. Reestablishing apex predators in large, contiguous areas of public land may help mitigate any adverse ecological effects of wild ungulates.  相似文献   

14.
Mercury, a toxic metal known to have several deleterious affects on human health, has been one of the principal contaminants of concern in the Great Lakes basin. There are numerous anthropogenic sources of mercury to the Great Lakes area. Combustion of coal, smelting of non ferrous metals, and incineration of municipal and medical waste are major sources of mercury emissions in the region. In addition to North American anthropogenic emissions, global atmospheric emissions also significantly contribute to the deposition of mercury in the Great Lakes basin. Both the USA and Canada have agreed to reduce human exposure to mercury in the Great Lakes basin and have significantly curtailed mercury load to this region through individual and joint efforts. However, many important mercury sources, such as coal-fired power plants, still exist in the vicinity of the Great Lakes. More serious actions to drastically reduce mercury sources by employing alternative energy sources, restricting mercury trade and banning various mercury containing consumer products, such as dental amalgam are as essential as cleaning up the historical deposits of mercury in the basin. A strong political will and mass momentum are crucial for efficient mercury management. International cooperation is equally important. In the present paper, we have analyzed existing policies in respective jurisdictions to reduce mercury concentration in the Great Lakes environment. A brief review of the sources, occurrence in the Great Lakes, and the health effects of mercury is also included.  相似文献   

15.
经济增长与能源消费关系研究综述   总被引:1,自引:0,他引:1  
经济增长与能源消费的关系一直是经济学研究的热点问题之一.自20世纪70年代石油危机爆发以来,出现了大量研究能源价格对经济增长影响的文献.进入2l世纪,环境污染、能源短缺等问题逐渐凸显出来,研究焦点也转向了经济增长与能源消费的关系上.国内学者从20世纪90年代开始关注该领域,作者分别综述了国内外学者在该领域的代表性研究成果.  相似文献   

16.
ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.  相似文献   

17.
The Great Lakes region has a wealth of natural resources, including a system of five large lakes with 20 percent of the world's surface freshwater. A century and a half of municipal, industrial, and agricultural expansion has created a variety of environmental pressures. A 1972 landmark agreement between the United States and Canada committed both countries to an ecosystem-based approach to management and a strategy of virtually eliminating toxic chemical inputs. Over the past few decades, significant investments were made to address the region's environmental health. More recent strategies, however, were developed without adequate consideration of their economic and social impacts. Using the quality-based framework described in Part I of this article, this case study shows that the region has moved from crisis management to a more proactive, anticipatory approach.  相似文献   

18.
Human Influences on Water Quality in Great Lakes Coastal Wetlands   总被引:2,自引:0,他引:2  
A better understanding of relationships between human activities and water chemistry is needed to identify and manage sources of anthropogenic stress in Great Lakes coastal wetlands. The objective of the study described in this article was to characterize relationships between water chemistry and multiple classes of human activity (agriculture, population and development, point source pollution, and atmospheric deposition). We also evaluated the influence of geomorphology and biogeographic factors on stressor-water quality relationships. We collected water chemistry data from 98 coastal wetlands distributed along the United States shoreline of the Laurentian Great Lakes and GIS-based stressor data from the associated drainage basin to examine stressor-water quality relationships. The sampling captured broad ranges (1.5–2 orders of magnitude) in total phosphorus (TP), total nitrogen (TN), dissolved inorganic nitrogen (DIN), total suspended solids (TSS), chlorophyll a (Chl a), and chloride; concentrations were strongly correlated with stressor metrics. Hierarchical partitioning and all-subsets regression analyses were used to evaluate the independent influence of different stressor classes on water quality and to identify best predictive models. Results showed that all categories of stress influenced water quality and that the relative influence of different classes of disturbance varied among water quality parameters. Chloride exhibited the strongest relationships with stressors followed in order by TN, Chl a, TP, TSS, and DIN. In general, coarse scale classification of wetlands by morphology (three wetland classes: riverine, protected, open coastal) and biogeography (two ecoprovinces: Eastern Broadleaf Forest [EBF] and Laurentian Mixed Forest [LMF]) did not improve predictive models. This study provides strong evidence of the link between water chemistry and human stress in Great Lakes coastal wetlands and can be used to inform management efforts to improve water quality in Great Lakes coastal ecosystems.  相似文献   

19.
China is confronted with the dual task of developing its national economy and protecting its ecological environment. Since the 1980s, China's policies on environmental protection and sustainable development have experienced five changes: (1) progression from the adoption of environmental protection as a basic state policy to the adoption of sustainable development strategy; (2) changing focus from pollution control to ecological conservation equally; (3) shifting from end-of-pipe treatment to source control; (4) moving from point source treatment to regional environmental governance; and (5) a turn away from administrative management-based approaches and towards a legal means and economic instruments-based approach. Since 1992, China has set down sustainable development as a basic national strategy. However, environmental pollution and ecological degradation in China have continued to be serious problems and have inflicted great damage on the economy and quality of life. The beginning of the 21st century is a critical juncture for China's efforts towards sustaining rapid economic development, intensifying environmental protection efforts, and curbing ecological degradation. As the largest developing country, China's policies on environmental protection and sustainable development will be of primary importance not only for China, but also the world. Realizing a completely well-off society by the year 2020 is seen as a crucial task by the Chinese government and an important goal for China's economic development in the new century, however, attaining it would require a four-fold increase over China's year 2000 GDP. Therefore, speeding up economic development is a major mission during the next two decades and doing so will bring great challenges in controlling depletion of natural resources and environmental pollution. By taking a critical look at the development of Chinese environmental policy, we try to determine how best to coordinate the relationship between the environment and the economy in order to improve quality of life and the sustainability of China's resources and environment. Examples of important measures include: adjustment of economic structure, reform of energy policy, development of environmental industry, pollution prevention and ecological conservation, capacity building, and international cooperation and public participation.  相似文献   

20.
The frequency and severity of mass coral bleaching events are predicted to increase as sea temperatures continue to warm under a global regime of rising ocean temperatures. Bleaching events can be disastrous for coral reef ecosystems and, given the number of other stressors to reefs that result from human activities, there is widespread concern about their future. This article provides a strategic framework from the Great Barrier Reef to prepare for and respond to mass bleaching events. The framework presented has two main inter-related components: an early warning system and assessment and monitoring. Both include the need to proactively and consistently communicate information on environmental conditions and the level of bleaching severity to senior decision-makers, stakeholders, and the public. Managers, being the most timely and credible source of information on bleaching events, can facilitate the implementation of strategies that can give reefs the best chance to recover from bleaching and to withstand future disturbances. The proposed framework is readily transferable to other coral reef regions, and can easily be adapted by managers to local financial, technical, and human resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号