首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive and comparative model validation of two EPA models for short-term SO2 concentrations was performed. The two models tested were RAM (Urban version) and PTMTP (Terrain version). Both are multiple source, multiple receptor gaussian plume models, recommended in the EPA Guideline On Air Quality Models. 1 The principal difference between the two models is in their use of empirical dispersion coefficients. It was because of the potential for markedly different predicted maximum SO2 concentrations, and the absence of any testing data on the RAM model, that the validation analysis was undertaken. The current study utilized a full year of air quality data from monitoring sites in two Indiana cities, Michigan City and Indianapolis. Cumulative frequency distributions for each site and model were prepared and comparisons made. The results indicate that the RAM (Urban) model was highly inaccurate in predicting maximum short-term SO2 concentrations. The PTMTP model, although conservative in its estimates, produces results which more closely resemble the distribution of observed SO2 concentrations. The body of information presented in this paper is directed to environmental scientists responsible for air quality modeling, and to those persons who set policy on the use of models in air quality studies.  相似文献   

2.
3.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

4.
ABSTRACT

Airborne measurements were made of gaseous and particulate species in the plume of a large coal-fired power plant after flue gas desulfurization (FGD) controls were installed. These measurements were compared with measurements made before the controls were installed. The light scattering and number and volume distributions of plume excess particles were determined by nephelometry and optical particle counting techniques. The plume impact based on optical techniques was much lower than that observed in earlier measurements. Indeed, plume excess volumes as a function of particle size were of the same magnitude as the variability of the background volume distribution. In situ excess plume scattering actually decreased with distance from the source, in contrast to pre-FGD conditions. The upper limit for the dry rate of SO2-to-SO4 2- conversion was estimated from plume excess volume measurements to be about 4% lir1. This is slightly greater than the upper limit, 3.5% lir1, estimated by earlier researchers, but the same as that estimated using the present technique with the earlier data. The cross-plume profile of volume suggests SO2-to-SO4 2- conversion is highest at the plume edges. The greatest benefit of SO2 reduction on plume excess volume and visibility appears to occur far downwind of the source.  相似文献   

5.
The COMPLEX I and COMPLEX II Gaussian dispersion models for complex terrain applications have been made available by EPA. Various terrain treatment options under IOPT(25) can be selected for a particular application, one of which [IOPT(25) = 1] is an algorithm similar to that of the VALLEY model. A model performance evaluation exercise involving three of the available options with both COMPLEX models was carried out using SF6 tracer measurements taken during worst-case stable impaction conditions in complex terrain at the Harry Allen Plant site in southern Nevada. The models did not reproduce observed concentrations on an event by event basis, as correlation coefficients for 1-h concentrations of 0-0.3 were exhibited. When observed and calculated cumulative frequency distributions for 1-h and 3-h concentrations were compared, a close correspondence between observations and concentrations calculated with COMPLEX I, IOPT(25) = 2 or 3 was noted; both options consistently overestimated observed concentrations. With IOPT(25) = 1, upper percentile (maximum) values in the calculated frequency distribution exceeded the corresponding IOPT(25) = 2 or 3 value by roughly a factor of 2, and observed values by 2.5-5. COMPLEX II typically produced maximum values 2-4 times as great as COMPLEX I for the same terrain treatment option. From these results it is concluded that: 1) the physically unrealistic sector-spread approach used in VALLEY and COMPLEX I under stable impaction conditions is a surrogate for wind direction variation, and 2) the doubling of the plume centerline concentration due to ground reflection under terrain impingement conditions that is included in IOPT(25) = 1 is inappropriate.

These findings were found to be consistent with an analysis of noncurrent observed and calculated SO2 χ/Q frequency distributions for 1, 3, and 24 hours near the Four Corners Plant in New Mexico. The comparison involved a four-year calculated χ/Q data set and a two-year observed χ/Q data set at the worst-case high terrain impact location near the plant.  相似文献   

6.
Airborne measurements of gaseous and particulate sulfur and nitrogen pollutants were made in southwestern Kentucky on the afternoon of October 21, 1979. Back-trajectory analysis indicates that the sampled air parcel moved over northern Florida, Alabama, and western Tennessee during the two days prior to sampling. Before moving over Florida, the air parcel was over the Atlantic Ocean for at least five days. Analytical long-range transport (LRT) model predictions based on anthropogenic emissions account for only about 75% of the airborne measured concentrations of 14.7 μg m?3 for SO2 and 4.8 μg m?3 for SO4 2?. The remaining 25 % is thought to be due to biogenic sulfur emissions from the extensive wetland areas along the Gulf Coast.

Forward-trajectory analysis indicates that the air parcel moved to the Adirondack Mountains of New York State 24 hours after sampling. Model predictions indicate that SO2 and SO4 2? mean layer concentrations at the Adirondacks were 24 and 16 μg?3, respectively. Almost half of this sulfur was estimated to come from emissions in the heavily industrialized region along the Ohio River Valley.

Further comparisons used a measurement data base obtained in southeastern Canada and the state of Arkansas during August 1976. An air parcel was tracked for seven days as it entered the north central United States, stagnated over the lower midwest, and then moved to eastern Canada. Model predictions were in substantial agreement with regional SO4 2? concentrations measured at a number of ground-level sites. Average SO4 2? concentrations measured in central Arkansas on August 10, 1976 were 20 μ m?3 vs. a modeled value of 19 μ m?3. Average SO4 2? concentrations measured in Nova Scotia four days later were 22 μg?3 vs. a modeled estimate of 24 μg?3.  相似文献   

7.
Transport and dispersion of pollutants in the lower atmosphere are predicted by using both a Lagrangian particle model (LPM) and an adaptive puff model (APM2) coupled to the same mesoscale meteorological prediction model PMETEO. LPM and APM2 apply the same numerical solutions for plume rise; but, for advection and plume growth, LPM uses a stochastic surrogate to the pollutant conservation equation, and APM2 applies interpolated winds and standard deviations from the meteorological model, using a step-wise Gaussian approach. The results of both models in forecasting the SO2 ground level concentration (glc) around the 1400 MWe coal-fired As Pontes Power Plant are compared under unstable conditions. In addition, meteorological and SO2 glc numerical results are compared to field measurements provided by 17 fully automated SO2 glc remote stations, nine meteorological towers and one Remtech PA-3 SODAR, from a meteorological and air quality monitoring network located 30 km around the power plant.  相似文献   

8.
A new method was developed for determining the contribution of one pollutant source to the air quality in an industrialized region. Although the method is general, it is presented in reference to a 130,000 bbl/day petroleum refinery and its effect on ambient SO2 concentrations in Sarnia, Ontario. The plumes from SO2 emitters located upwind of the refinery were represented by a single hypothetical plume which influences monitoring stations located upwind as well as downwind from the refinery. However, the refinery emissions affect only the downwind stations. A simple equation was derived by means of which the concentration at the downwind station could be calculated from the concentration at the upwind station and the refinery emission. This equation contains two coefficients A and B which were evaluated such that the difference between the cumulative frequency distributions of the measured and calculated SO2 concentrations at the downwind station was minimized. For the meteorological conditions and monitoring stations considered, it was found that the refinery contributed less than 4.5 pphm to ambient SO2 concentrations over 1 hr periods. This result and the validity of the method are discussed.  相似文献   

9.
The reactive and optics model of emissions (ROME) is a reactive plume visibility model that simulates the potential atmospheric impacts of stack emissions. We present here an evaluation of the ability of ROME to simulate several plume physical and chemical variables, using an experimental data base that consists of a total of 40 case studies from four field programs. The evaluation variables include plume height, horizontal width, NOx and SO2 maximum concentrations, NO2/NOx concentration ratio at the plume centerline, and plume-to-sky radiance ratios. Three algorithms used to simulate plume dispersion in ROME were compared: (1) the empirical Pasquill–Gifford–Turner (PGT) scheme, (2) a first-order closure (FOC) algorithm and (3) a second-order closure (SOC) algorithm that simulates the instantaneous plume dimensions.The plume height results show a correlation of 0.82 between simulated and measured values and a gross error that is 13% of the mean measured value. For plume horizontal dispersion, the second-order closure algorithm produces a moderate correlation (0.54) and a small bias (5% of the mean measured value) in comparison with the field data. Although the PGT scheme also demonstrates moderate correlation with the measurements, it produces a negative bias by significantly underestimating plume horizontal dispersion. The first-order closure algorithm overestimates plume width and shows the least correlation (with the measurements) of the three dispersion algorithms.For the NYSEG data set where coordinated measurements of stack emissions, meteorology at plume height and plume characteristics were available, the SOC algorithm provides better correlations for NOx concentrations, NO2/NOx ratios and plume visibility than the FOC and PGT algorithms. For plume visibility, the SOC algorithm shows a correlation of 0.96 at 405 nm, the wavelength where the plume was visible, and it simulates no visible plume at the other wavelengths (550 and 700 nm).A comparison of ROME simulations with those of the plume visibility model PLUVUE II shows that ROME, with the SOC algorithm, performs better for all variables.  相似文献   

10.
ABSTRACT

The rate of conversion of SO2 to SO4 2- was re-estimated from measurements made in the plume of the Cumberland power plant, located on the Cumberland River in north-central Tennessee, after installation of flue gas desulfurization (FGD) scrubbers for SO2 removal in 1994. The ratio of SO2 to NOy emissions into the plume has been reduced to ~0.1, compared with a prescrubber value of ~2. To determine whether the SO2 emissions reduction has correspondingly reduced plume-generated particulate SO4 2- production, we have compared the rates of conversion before and after scrubber installation. The prescrubber estimates were developed from measurements made during the Tennessee Plume Study conducted in the late 1970s. The post-scrubber estimates are based upon two series of research flights in the summers of 1998 and 1999. During two of these flights, the Cumberland plume did not mix with adjacent power plant plumes, enabling rate constants for conversion to be estimated from samples taken in the plume at three downwind distances. Dry deposition losses and the fact the fact that SO2 is no longer in large excess compared with SO4 2- have been taken into account, and an upper limit for the conversion rate constant was re-estimated based on plume excess aerosol volume. The estimated upper limit values are 0.069 hr-1 and 0.034 hr-1 for the 1998 and 1999 data, respectively. The 1999 rate is comparable with earlier values for nonscrubbed plumes, and although the 1998 upper limit value is higher than expected, these estimates do not provide strong evidence for deviation from a linear relationship between SO2 emissions and SO4 2- formation.  相似文献   

11.
ABSTRACT

The rate of formation of secondary particulate matter (PM) in power plant plumes varies as the plume material mixes with the background air. Consequently, the rate of oxidation of sulfur dioxide (SO2) and nitrogen dioxide (NO2) to sulfate and nitric acid, respectively, can be very different in plumes and in the background air (i.e., air outside the plume). In addition, the formation of sulfate and nitric acid in a power plant plume is a strong function of the chemical composition of the background air and the prevailing meteorological conditions.

We describe the use of a reactive plume model, the Reactive and Optics Model of Emissions, to simulate sulfate and nitrate formation in a power plant plume for a variety of background conditions. We show that SO2 and NO2 oxidation rates are maximum in the background air for volatile organic compound (VOC)-limited airsheds but are maximum at some downwind distance in the plume when the background air is nitrogen oxide (NOx)-limited. Our analysis also shows that it is essential to obtain measurements of background concentrations of ozone, aldehydes, peroxyacetyl nitrate, and other VOCs to properly describe plume chemistry.  相似文献   

12.
ABSTRACT

A case study was conducted to evaluate the SO2 emission reduction in a power plant in Central Mexico, as a result of the shifting of fuel oil to natural gas. Emissions of criteria pollutants, greenhouse gases, organic and inorganic toxics were estimated based on a 2010 report of hourly fuel oil consumption at the “Francisco Pérez Ríos” power plant in Tula, Mexico. For SO2, the dispersion of these emissions was assessed with the CALPUFF dispersion model. Emissions reductions of > 99% for SO2, PM and Pb, as well as reductions >50% for organic and inorganic toxics were observed when simulating the use of natural gas. Maximum annual (993 µg/m3) and monthly average SO2 concentrations were simulated during the cold-dry period (152–1063 µg/m3), and warm-dry period (239–432 µg/m3). Dispersion model results and those from Mexico City’s air quality forecasting system showed that SO2 emissions from the power plant affect the north of Mexico City in the cold-dry period. The evaluation of model estimates with 24 hr SO2 measured concentrations at Tepeji del Rio suggests that the combination of observations and dispersion models are useful in assessing the reduction of SO2 emissions due to shifting in fuels. Being SO2 a major precursor of acid rain, high transported sulfate concentrations are of concern and low pH values have been reported in the south of Mexico City, indicating that secondary SO2 products emitted in the power plant can be transported to Mexico City under specific atmospheric conditions.

Implications: Although the surroundings of a power plant located north of Mexico City receives most of the direct SO2 impact from fuel oil emissions, the plume is dispersed and advected to the Mexico City metropolitan area, where its secondary products may cause acid rain. The use of cleaner fuels may assure significant SO2 reductions in the plant emissions and consequent acid rain presence in nearby populated cities and should be compulsory in critical areas to comply with annual emission limits and health standards.  相似文献   

13.
The Environmental Protection Agency is reviewing the need for a short-term NO2 standard based on an averaging time of three hours or less. State Implementation plans and New Source Reviews will require air quality simulation techniques capable of estimating ambient NO2 concentrations. There is a need for multi-source (urban) models and for point source models.

A review of currently available techniques for the estimation of NO2 concentrations resulting from NOx point sources is presented. The available methods include simple screening techniques and refined reactive plume models. The screening techniques first use a standard gaussian dispersion model to estimate the maximum 1 hr NOx concentration caused by the source. The second step involves estimating the fraction of this NO* concentration occurring as NO2.

Reactive plume models numerically simulate the simultaneous effects of dispersion and chemistry on NO2 concentrations. Organic as well as inorganic reactions are incorporated. Reactive plume models should be used, where screening techniques indicate the potential for violation of the NO2 standard.

Current generation reactive plume models neglect the effect of turbulent concentration fluctuation on NO2 formation and use inappropriately large dispersion coefficients to estimate plume concentrations. Approaches being developed to resolve these problems are discussed.  相似文献   

14.
ABSTRACT

During wintertime, haze episodes occur in the Dallas-Ft. Worth (DFW) urban area. Such episodes are characterized by substantial light scattering by particles and relatively low absorption, leading to so-called “white haze.” The objective of this work was to assess whether reductions in the emissions of SO2 from specific coal-fired power plants located over 100 km from DFW could lead to a discernible change in the DFW white haze. To that end, the transport, dispersion, deposition, and chemistry of the plume of a major power plant were simulated using a reactive plume model (ROME). The realism of the plume model simulations was tested by comparing model calculations of plume concentrations with aircraft data of SF6 tracer concentrations and ozone concentrations. A second-order closure dispersion algorithm was shown to perform better than a first-order closure algorithm and the empirical Pasquill-Gifford-Turner algorithm. For plume impact assessment, three actual scenarios were simulated, two with clear-sky conditions and one with the presence of fog prior to the haze. The largest amount of sulfate formation was obtained for the fog episode. Therefore, a hypothetical scenario was constructed using the meteorological conditions of the fog episode with input data values adjusted to be more conducive to sulfate formation. The results of the simulations suggest that reductions in the power plant emissions lead to less than proportional reductions in sulfate concentrations in DFW for the fog scenario. Calculations of the associated effects on light scattering using Mie theory suggest that reduction in total (plume + ambient) light extinction of less than 13% would be obtained with a 44% reduction in emissions of SO2 from the modeled power plant.  相似文献   

15.
ABSTRACT

The visual impact of primary particles emitted from stacks is regulated according to stack opacity criteria. In-stack monitoring of the flue gas opacity allows plant operators to ensure that the plant meets U.S. Environmental Protection Agency opacity regulations. However, the emission of condensable gases such as SO3 (that hydrolyzes to H2SO4), HCl, and NH3, which may lead to particle formation after their release from the stack, makes the prediction of stack plume opacity more difficult.

We present here a computer simulation model that calculates the opacity due to both primary particles emitted from the stack and secondary particles formed in the atmosphere after the release of condensable gases from the stack. A comprehensive treatment of the plume rise due to buoyancy and momentum is used to calculate the location at which the condensed water plume has evaporated (i.e., where opacity regulations apply).

Conversion of H2SO4 to particulate sulfate occurs through nucleation and condensation on primary particles. A thermodynamic aerosol equilibrium model is used to calculate the amount of ammonium, chloride, and water present in the particulate phase with the condensed sulfate. The model calculates the stack plume opacity due to both primary and secondary particles. Examples of model simulations are presented for three scenarios that differ by the emission control equipment installed at the power plant: (1) electrostatic precipitators (ESP), (2) ESP and flue gas desulfurization, and (3) ESP and selective catalytic reduction. The calculated opacity is most sensitive to the primary particulate emissions. For the conditions considered here, SO3 emissions showed only a small effect, except if one assumes that most H2SO4 condenses on primary particles. Condensation of NH4Cl occurs only at high NH3 emission rates (about 25 ppm stack concentration).  相似文献   

16.
Abstract

Twenty-five MiniVol samplers were operated throughout the Mexico City metropolitan region from February 22 through March 22, 1997, to evaluate the variability of PM10 concentrations and composition. The highest PM10 concentrations were found in neighborhoods with unpaved or dirty roads, and elements related to crustal material were the main cause of differences from nearby (<200 m) monitors that were not adjacent to the roadbed. SO4 2?concentrations were homogeneous across the city. SO4 2?measured at the city boundaries was about two-thirds of the concentrations measured within the urbanized area, indicating that most SO4 2? is of regional origin. Elemental carbon (EC) and organic carbon (OC) concentrations were highly variable, with higher concentrations in areas that had high diesel traffic and older vehicles. Spatial correlations among PM10 concentrations were high, even though absolute concentrations were variable, indicating a common effect of meteorology on the concentration or dispersion of local emissions.  相似文献   

17.
To estimate plausible health effects associated with peak sulfur dioxide (SO2) levels from three coal-fired power plants in the Baltimore, Maryland, area, air monitoring was conducted between June and September 2013. Historically, the summer months are periods when emissions are highest. Monitoring included a 5-day mobile and a subsequent 61-day stationary monitoring study. In the stationary monitoring study, equipment was set up at four sites where models predicted and mobile monitoring data measured the highest average concentrations of SO2. Continuous monitors recorded ambient concentrations each minute. The 1-min data were used to calculate 5-min and 1-hr moving averages for comparison with concentrations from clinical studies that elicited lung function decrement and respiratory symptoms among asthmatics. Maximum daily 5-min moving average concentrations from the mobile monitoring study ranged from 70 to 84 ppb (183–220 µg/m3), and maximum daily 1-hr moving average concentrations from the mobile monitoring study ranged from 15 to 24 ppb (39–63 µg/m3). Maximum 5-min moving average concentrations from stationary monitoring ranged from 39 to 229 ppb (102–600 µg/m3), and maximum daily 1-hr average concentrations ranged from 15 to 134 ppb (40–351 µg/m3). Estimated exposure concentrations measured in the vicinity of monitors were below the lowest levels that have demonstrated respiratory symptoms in human clinical studies for healthy exercising asthmatics. Based on 5-min and 1-hr monitoring, the exposure levels of SO2 in the vicinity of the C.P. Crane, Brandon Shores, and H.A. Wagner power plants were not likely to elicit respiratory symptoms in healthy asthmatics.

Implications: Mobile and stationary air monitoring for SO2 were conducted to quantify short-term exposure risk, to the surrounding community, from peak emissions of three coal-fired power plants in the Baltimore area. Concentrations were typically low, with only a few 5-min averages higher than levels indicated during clinical trials to induce changes in lung capacity for healthy asthmatics engaged in exercise outdoors.  相似文献   

18.
We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO42?) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO42? concentrations were higher at the sites closer to the Asian continent. The concentrations of SO42? from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO42? to the total in Japan throughout the year was above 50–70% in the control case, using data for Chinese sulfur dioxide (SO2) emission from the Regional Emission Inventory in Asia (40–60% in the low Chinese emissions case, using Chinese SO2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65–80%, although the actual concentrations of SO42? from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO42? concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO2 concentrations; instead SO2 concentrations were significantly correlated with local SO2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO42? concentrations in Japan are controlled by the transboundary outflow from the Asian continent.  相似文献   

19.
A steady state mesoscale model developed to predict primary SO2 concentrations from a single point source is presented. The model was validated with data from the Midwest Interstate Sulfur Transport and Transformation (MISTT) project, with root mean square errors of 9.69 μg m?3 and 0.42 μg m?3 for SO2 and SO4 respectively. Wet deposition (washout and rainout), eddy dispersivity, dry deposition of SO2 and mean wind speed were found to be the most important factors controlling sulfur dioxide and sulfate concentrations. Estimation of precipitation acidity was then carried out using scavenging theory. The greatest potential acidification occurred approximately 200 km from the source along plume centerllne, which indicates a rather local effect as opposed to a long distance effect. The cross-plume influence was up to 60 km in width at a distance of 400 km from the source.  相似文献   

20.
ABSTRACT

The air quality in five Finnish ice arenas with different volumes, ventilation systems, and resurfacer power sources (propane, gasoline, electric) was monitored during a usual training evening and a standardized, simulated ice hockey game. The measurements included continuous recording of carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2) concentrations, and sampling and analysis of volatile organic compounds (VOCs). Emissions from the ice resurfacers with combustion engines caused indoor air quality problems in all ice arenas. The highest 1-hour average CO and NO2 concentrations ranged from 20 to 33 mg/m3 (17 to 29 ppm) and 270 to 7440 µg/m3 (0.14 to 3.96 ppm), respectively. The 3-hour total VOC concentrations ranged from 150 to 1200 µg/m3. The highest CO and VOC levels were measured in the arena in which a gasoline-fueled resurfacer was used. The highest NO2 levels were measured in small ice arenas with propane-fueled ice resurfacers and insufficient ventilation.

In these arenas, the indoor NO2 levels were about 100 times the levels measured in ambient outdoor air, and the highest 1-hour concentrations were about 20 times the national and World Health Organization (WHO) health-based air quality guidelines. The air quality was fully acceptable only in the arena with an electric resurfacer. The present study showed that the air quality problems of indoor ice arenas may vary with the fuel type of resurfacer and the volume and ventilation of arena building. It also confirmed that there are severe air quality problems in Finnish ice arenas similar to those previously described in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号