首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
There are economic and regulatory incentives for considering alternatives to the direct land disposal of solvent-bearing hazardous waste streams (EPA Hazardous Waste Codes: F001, F002, F003, F004, and F005). These alternatives include recycle/reuse (including use as a fuel substitute), destruction of a stream's solvent component, and treatment prior to land disposal. This paper reviews these three waste management alternatives and discusses their applicability to solvent waste streams having various physical characteristics. Seven waste treatment techniques which may be used to handle solvent wastes are described: incineration, agitated thin-film evaporation, fractional distillation, steam stripping, wet oxidation, carbon adsorption, and activated sludge biological treatment.  相似文献   

2.
In this paper, the authors present generation and treatment information for corrosive hazardous wastes (EPA Hazaradous Waste Codes D002 and K062). The authors discuss the state of the art for several treatment trains used to process specific types of corrosive waste. Treatment trains incorporate various unit processes selected from but not limited to the following: neutralization, filtration, carbon adsorption, biological oxidation, distillation, air flotation, and incineration. Unit processes are selected to form trains according to the corrosive characteristics of each individual waste stream. The treatment processes discussed are proposed to be used instead of landfills for disposal of corrosive waste.  相似文献   

3.
Abstract

The U.S. Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the U.S. Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM Include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army’s six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States.  相似文献   

4.
Spills, leaks, and accidental discharges of petroleum products have contaminated soil at thousands of sites in the United States. One remedial action technique for treating petroleum contaminated soil is the use of thermal desorption technologies.

This paper describes key elements of the U.S. Environmental Protection Agency report titled “Thermal Desorption Applications Manual for Treating Nonhazardous Petroleum Contaminated Soils.”1 The applications manual describes the types, mechanical and operating characteristics of thermal desorption technologies that are commercially available to treat petroleum-contaminated soils. It also provides step-by-step procedures to rate the critical success factors influencing the general applicability of thermal desorption at a particular site. These factors include site, waste and soil characteristics, regulatory requirements, and process equipment design and operating characteristics. Procedures are provided to determine the types of thermal desorption systems that are most technically suitable for a given application and to determine whether on-site or off-site treatment is likely to be the most cost-effective alternative. Key factors that determine process economics are identified, and estimated cost ranges for treating petroleum-contaminated soils are presented. Spreadsheets are provided that can be used for performing cost analyses for specific applications.

The aforementioned report is applicable only to the treatment of petroleum-contaminated soils that are exempt from being classified as hazardous wastes under the Resource Conservation and Recovery Act (RCRA) or as toxic materials under the Toxic Substances Control Act (TSCA). Although much of the technical discussion in this paper is applicable to the treatment of both nonhazardous and hazardous ortoxic materials, permitting requirements and treatment costs are significantly different forthe individual categories of waste materials.  相似文献   

5.
Abstract

The patented Carver-Greenfield (C-G) Process®, a combination of dehydration and solvent extraction treatment technologies, has a wide range of uses in separating hydrocarbon solvent-soluble hazardous organic contaminants (indigenous oil) from sludges, soils, and industrial wastes. As a result of this treatment, the products from a C-G Process facility are: ? Clean, dry solids which are typically suitable for disposal in nonhazardous landfills;

? Water which is treatable in an industrial or Publicly Owned Treatment Works (POTW) wastewater treatment facility;

? Extracted indigenous oil containing hydrocarbon soluble contaminants which may be recycled or reused or disposed of at less cost because its volume is smaller than the original waste feed.

The C-G Process was demonstrated on spent oily drilling fluids as part of the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. This paper summarizes the use of the C-G Process for economical treatment and minimization of hazardous refinery wastes, reviews the SITE program results, and describes extending the C-G Process technology to treatment of other wastes. Estimated treatment costs are presented.  相似文献   

6.
ABSTRACT

The purpose of this investigation was to evaluate the success of residues from advanced Clean Coal Technology (CCT) systems as stabilization agents for heavy metal containing hazardous wastes. In the context examined here, stabilization refers to techniques that reduce the toxicity of a waste by converting the hazardous constituents to a less soluble, mobile, or toxic form.1 Three advanced CCT byproducts were used: coal waste-fired circulating fluidized bed combustor residue, pressurized fluidized bed combustor residue, and spray drier residue. Seven metal-laden hazardous wastes were treated: three contaminated soils, two air pollution control dusts, wastewater treatment plant sludge, and sandblast waste. Each of the seven hazardous wastes was treated with each of the three CCT byproducts at dosages of 10, 30, and 50% by weight (byproduct:waste). The treatment effectiveness of each mixture was evaluated by the Toxicity Characteristic Leaching Procedure. Of the 63 mixtures evaluated, 21 produced non-hazardous residues. Treatment effectiveness can likely be attributed to mechanisms such as precipitation and encapsulation due to the formation of hydrated calcium silicates and calcium sulfo-alu-minates. Results indicate that these residues have potential beneficial uses to the hazardous waste treatment community, possibly substituting for costly treatment chemicals.  相似文献   

7.
Closing Remarks     
Abstract

The recent standards of performance for wastewater sources in the Synthetic Organic Chemical Manufacturing Industry (SOCMI), published by the U.S. Environmental Protection Agency (EPA), call for treatment of waste–water containing 500 ppmw volatile organic compounds (VOCs) and operating at flow rates greater than 1.0 liter per minute. There are a number of methods for achieving compliance with the treatment standards for wastewater. Among these is treatment to a VOC concentration of less than 50 ppmw with the removal of total VOC mass from the wastewater stream by 95%. If the wastewater treatment system uses stripping or evaporation, then the unit must be covered and vented to a control device. Emissions from the vent control system must be no greater than 20 ppmw. In this work, a treatment system is designed that would achieve compliance with the published standards. A novel unit operation—thin–film evaporation into a natural gas receiving stream—is used to treat the wastewater stream, while the vapor stream is combusted in a boiler or similar fired unit. The process employs a multimedia approach to minimize total treatment costs.  相似文献   

8.
ABSTRACT

A tunable electron beam generated plasma system has been developed for selective cold plasma treatment of dilute concentrations (1-3,000 ppm range) of hazardous compounds in gaseous waste treatment. This system, referred to as the Tunable Hybrid Plasma (THP), has shown a high degree of efficiency and effectiveness in both laboratory and field tests. Decomposition energy requirements are in the 100 eV per molecule range for treatment of carbon tetrachloride and 10 eV for treatment of trichloroethylene.

A cost comparison has been made between the Tunable Hybrid Plasma (THP) technology and three conventional technologies used for emission control of volatile organic compounds (VOCs): granular activated carbon, thermal incineration, and catalytic oxidation. In addition to its environmentally attractive features, THP technology has the potential to be lower cost than other technologies over a range of concentrations and flow rates. Cost projections for the THP system for decomposition of trichloroet-hylene are around 50 cents/lb for initial concentrations in the few hundred ppm range and flow rates of 5,000 cfm or greater and around $1/lb for 1,000 cfm flow rates. Cost projections for carbon tetrachloride and trichloroethane decomposition using the THP technology are several dollars per pound. The costs for THP treatment are generally significantly lower than costs for use of granular activated carbon and are also quite competitive with costs for thermal incineration and catalytic oxidation.  相似文献   

9.
This article is a series of representative case studies of Department of Defense hazardous waste minimization. Each Military Department and the Defense Logistics Agency describe actual accomplishments. Areas covered range from production line modification to product specification change. These efforts are part of a Department of Defense plan composed of individual programs executed independently by each military service and defense agency.

Part VII of the hazardous waste minimization series appears in two separate installments: this installment, Part VII (A), deals with Department of Defense waste minimization efforts in vehicle repair operations, explosives manufacturing, and abrasive blasting processes; Part VII (B) will cover shipboard mercury wastes, industrial chemical control, solvent reclamation, and hazardous property sales efforts.  相似文献   

10.
This article is a series of representative case studies of Department of Defense hazardous waste minimization. Each Military Department and the Defense Logistics Agency describe actual accomplishments. Areas covered range from production line modification to product specification change. These efforts are part of a Department of Defense plan composed of individual programs executed independently by each military service and defense agency.

Part VII of the hazardous waste minimization series appears in two separate installments: the first installment, Part VII (A), dealt with Department of Defense waste minimization efforts in vehicle repair operations, explosives manufacturing, and abrasive blasting processes; Part VII (B) covers shipboard mercury wastes, industrial chemical control, solvent reclamation, and hazardous property sales efforts.  相似文献   

11.

Chromium-containing solid wastes have been generated by chemical and leather/tanning industries, and the management and proper disposal of the same wastes have been challenging tasks. A significant fraction of these wastes contains chromium compounds with chromium present in the hexavalent (Cr+6) form, which is hazardous to human beings, animals, and ecosystems. Since these wastes are discarded largely without proper treatments, soil and groundwater get contaminated and they can cause several health issues to human beings. Conventional methods developed to convert hazardous Cr6+ to Cr3+/Cr metal either generate secondary toxic wastes and unwanted by-products and/or are time-consuming processes. In this work, a plasma-assisted aluminothermic process is developed to convert the toxic waste into non-toxic products. The waste was mixed with aluminium powder and subjected to transferred arc plasma treatment in a controlled air atmosphere. Chemical analysis and Cr leachability studies of the waste material prior to plasma treatment have shown that it is highly toxic. Analysis of the products obtained from the plasma treatment showed that Cr and Fe present in the waste could be recovered as a metallic mixture as well as oxide slag, which were found to be non-toxic. Easy separation of the metallic fraction and the slag from the treated product is one of the merits of this process. Besides converting chromium-containing toxic waste to non-toxic materials, the process is rapid and recovers the metals from the waste completely.

  相似文献   

12.
A number of policies adopted by the federal government and the states have been designed to promote waste reduction or influence the choice of waste disposal technologies employed by generators of hazardous waste. Graphic analysis of smoothed time series data for hazardous wastes manifested in New York State for the period between June 1982 and February 1987 suggests that some of these policies have had the intended effects.

Significant shifts in manifested waste volumes are evident that coincide with the following policy interventions: (1) increased state waste-end tax rates; (2) state and federal landfill bans; (3) federal restrictions on burning hazardous wastes and waste oils for energy recovery; and (4) changes in the federal regulatory definition of hazardous waste. Other changes in waste generation and management appear to be attributable to such factors as state and regional economic conditions and changes in instate treatment and disposal facility capacity. Analysis of the management of specific waste types supports evidence from the graphic analysis that waste generators changed from land disposal to “higher” waste handling technologies in response to several policy interventions.  相似文献   

13.
Abstract

Superfund sites frequently contain both heavy metals and organic hazardous waste. If not properly controlled, the metals may be changed to a more leachable form and may also be emitted to the atmosphere via the exhaust stack. This paper documents a batch kiln R&D test program to solve these metal-related problems. It was performed under the U.S. EPA’s SITE (Superfund Innovative Technology Evaluation) Emerging Technology Program. Allis Mineral Systems has developed the Thermal Encapsulation Process. Metals with limits set by EPA’s TCLP (Toxicity Characteristic Leaching Procedure) test and BIF (boiler and industrial furnace) stack emission regulations, such as cadmium, chromium, and lead, are the initial target of this process. This process, while unproven in these areas, may also apply to mixed waste (EPA hazardous waste/low-level radioactive wastes) and may also benefit commercial hazardous waste or Superfund thermal treatment systems. The results of the SITE tests were positive: strong, durable nodules were produced with excellent crush strength and improved resistance to leaching. Feed preparation, particularly control of moisture content, was found to be a key element in initiation of agglomeration. A good correlation was found between decreasing TCLP metals leachate levels and increasing crush strength.  相似文献   

14.
In the hazardous waste community, the term “thermal destruction” is a catchallphrase that broadly refers to high temperature destruction of hazardous contaminants. Included in the thermal destruction category are treatment technologies such as rotary kiln incineration, fiuidized bed incineration, infrared thermal treatment, wet air oxidation, pyrolytic incineration, and vitrification. Among them, conventional rotary kiln incineration, a disposal method for many years, is the most well established, and often serves as a barometer to gauge the relative success of similar technologies. Public sentiment on environmental issues and increasingly stringent environmental regulations has, over time, spurred design and development of innovative thermal treatment processes directed toward reducing harmful emissions and residuals that may require further treatment or disposal. In situ vitrification (ISV), a technology that combines heat and immobiliztion, is one such innovative and relatively new technology.

This paper presents a comparison of ISV and rotary kiln incineration for soils treatment in the areas of process performance, process residuals, process limitations, applicable or relevant and appropriate (ARAJRs) regulations, criteria and limitations, and costs.  相似文献   

15.
The Superfund Innovative Technology Evaluation (SITE) program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between U.S. EPA’s Office of Research and Development and Office of Solid Waste and Emergency Response. The program is designed to assist and encourage the development of waste treatment technologies that would contribute to more solutions to our hazardous waste problems.

Recently, EPA, through the SITE program, issued a work assignment to assess the “stateof- the-art” of electroklnetically enhanced contaminant removal from soils. Prior research efforts, both laboratory and field, have demonstrated that electroosmosis has the potential to be effective In facilitating the removal of certain types of hazardous wastes from soils. Particularly encouraging results have been achieved with inorganics in fine-grained soils where more traditional removal alternatives are less effective.

Although the results of various studies suggest that electrokinetics is a promising technology, further testing Is needed at both the laboratory and field levels to fully develop this technology for site remediation. A conceptual test program Is presented based on best available data which incorporates system design and operating parameters used in previous applications of this technology In the use of electrokinetics treatment as a remediation technique at hazardous waste sites.  相似文献   

16.
The Bayou Bonfouca hazardous waste site is located in Slidell, Louisiana, approximately 96 kilometers (60 miles) northeast of New Orleans. This site is ranked number 1,006 on the National Priorities List of Superfund sites. The U.S. Environmental Protection Agency (EPA) conducted a remedial investigation in 1986 and determined the primary potential exposure sources to be groundwater, surface waste piles, and contaminated sediment in Bayou Bonfouca. Based on the results of investigations, EPA and the Louisiana Department of Environmental Quality chose a remedy that involves dredging contaminated sediment from the bayou, excavating contaminated waste piles and soil, and incinerating the solid wastes in a transportable incinerator. The site remedy, which included incineration, was specified in the Record of Decision signed in March 1987.

Of the total 142,000 megagrams (Mg) (157,000 tons) of waste to be incinerated, approximately 119,000 Mg (132,000 tons) consist of hazardous sediment from the bayou; 22,600 Mg (25,000 tons) consist of lightly contaminated soils and waste piles, cellulosic materials, and other miscellaneous wastes on the ground. The solid wastes are primarily low heat content sediment and soils and cellulosic materials with polyaromatic hydrocarbon (PAH) concentrations from milligrams per kilogram (parts per million) levels up to two percent. The dredged bayou sediment will be dewatered in six, 115-cubiometer (150-cubic-yard) plate and frame filter presses before processing in the incinerator. A rotary-kiln-based single train incinerator is deployed at Bayou Bonfouca to process the solid waste feed.

On-site pilot studies indicated that the PAHs in groundwater could be removed by on-site pumping, treatment, and discharge of treated effluent to the bayou. The groundwater treatment plant went on-stream in June 1991. Treatment involves oil/water separation, filtration, carbon bed adsorption, and aeration.

IT Corporation-OH Materials, a joint venture, was awarded a contract in May 1991 and a notice to proceed in February 1992 to remediate and restore the Bayou Bonfouca site. The remediation project includes air quality monitoring and controls, site preparation, dredging and excavation, bayou bank stabilization and monitoring, equipment mobilization and erection, the trial burn, incineration, demobilization, and site closure. The project completed a successful trial burn in November 1993, and the commercial operation began in December 1993. The expected duration of the project is 40 months from mobilization to site closure.  相似文献   

17.
ABSTRACT

Microwave regeneration of adsorbents facilitates the recovery of volatile organic compounds (VOCs) by decoupling the bed heating from the stripping gas. This makes possible the creation of a highly-concentrated regeneration effluent from which the VOCs can be recovered by condensation at near-ambient temperatures. The economic feasibility of two novel microwave-regenerated adsorption systems was evaluated by systematically comparing the capital and operating costs of the proposed systems with 10 conventional VOC control technologies. The microwave systems were found to have similar capital and operating costs to conventional steam regeneration systems and, therefore, may present an attractive alternative for recovering water-miscible solvents. In general, the cost of the microwave subsystem is a relatively small component of the overall system costs, and the microwave power requirements are within the range of commercially available generators, even for large emission streams.  相似文献   

18.
ABSTRACT

Owners of hazardous waste treatment, storage, and disposal facilities, and certain major air pollution sources, must conduct several separate ambient air dispersion modeling analyses before beginning construction of new facilities or modifying existing facilities. These analyses are critical components of the environmental permitting and facility certification processes and must be completed to the satisfaction of federal, state, and local regulatory authorities.

The U.S. Army has conducted air dispersion modeling for its proposed chemical agent disposal facilities to fulfill the following environmental regulatory and risk management requirements: (1) Resource Conservation and Recovery Act human health and ecological risk assessment analysis for the hazardous waste treatment and storage permit applications, (2) Quantitative Risk Assessment to support the site-specific risk management programs, and (3) Prevention of Significant Deterioration ambient air impact analysis for the air permit applications. The purpose of these air dispersion modeling studies is to show that the potential impacts on human health and the environment, due to operation of the chemical agent disposal facilities, are acceptable. This paper describes and compares the types of air dispersion models, modeling input data requirements, modeling algorithms, and approaches used to satisfy the three environmental regulatory and risk management requirements listed above. Although this paper discusses only one industry (i.e., chemical demilitarization), the information it contains could help those in other industries who need to communicate to the public the purpose and objectives of each modeling analysis. It may also be useful in integrating the results of each analysis into an overarching summary of compliance and potential risks.  相似文献   

19.
This paper discusses the potential for using commercially available treatment techniques to remove VOCs from hazardous waste streams and addresses some of the issues associated with making waste treatment a viable VOC emission control technique for hazardous waste management facilities. It discusses the waste streams of concern because of their volatile constituents and describes potentially applicable treatment techniques. The use of models for treatment process design is described. Finally, the paper discusses treatment cost, treatment residuals, and considerations of importance in choosing where in the life cycle of a hazardous waste stream to treat it.  相似文献   

20.
This study aimed to investigate the effects on the environment of small clinics solid waste management by applying a life cycle analysis approach. Samples were collected from 371 private clinics situated in densely populated areas of Hyderabad, Pakistan. The solid waste from surveyed clinics was categorically quantified on daily basis for 30 consecutive days. The functional unit for waste was defined as 1 tonne. System limitations were defined as landfilling, incineration, composting, material recovery, and transportation of solid waste. The treatment and disposal methods were assessed according to their greenhouse gas emission rate. For the evaluation, three different scenarios were designed. The second scenario resulted in the highest emission value of 1491.78 kg CO2 eq/tonne of solid waste due to mixed waste incineration, whereas the first scenario could not offer any saving because of uncovered landfilling and 67.5% higher transport fuel consumption than the proposed network. The proposed third scenario was found to be a better solution for urban clinics solid waste management, as it resulted in savings of 951.38 kg CO2 eq/tonne of solid waste. This integrated design is practicable by resource-constrained economy. This system consists of composting, material recovery, and incineration of hazardous waste. The proposed system also includes a feasible transportation method for urban area collection networks. The findings of the present study can play a vital role in documenting evidence and for policymakers to plan the solid waste management of clinics, as previously no studies have been conducted on this particular case.

Implications: This study aims to highlight the impact of small clinics solid waste management scenarios on the environment in a developing country’s urban area. Life cycle analysis is used for comparison of greenhouse gase emission from different scenarios, including the purposed integrated method. Small clinics play a very important role in health care, and their waste management is a very serious issue; however, there are no previous studies on this particular case to the best knowledge of the authors. This study can be considered as forerunner effort to quantify the environmental footprint of small clinics solid waste in urban areas of a developing country.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号