首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model, which employs the use of high precision stable lead isotopic analyses, has been developed to estimate the age of hydrocarbon releases. The ALAS Model (Anthropogenic Lead ArchaeoStratigraphy) is based on calibrated, systematic increases in lead isotope ratios of gasolines caused by shifts in sources of lead ores used by the U.S. lead industry, including manufacturers of alkylleads, to more radiogenic Mississippi Valley Type (MVT) deposits. Acquisition of high quality samples (free product, gasoline-impacted soil and groundwater) of known age and subsequent analyses of the hydrocarbon component by high precision lead isotopic analyses by thermal ionization mass spectrometry (TIMS) have produced the ALAS Model calibration curve. Age uncertainties range from  ± 1 to 2 years for gasoline releases which occurred between 1965 and 1990, the major era of leaded gasoline usage. Analytical methods required to measure lead isotope ratios on ∼5 nanograms of lead with precisions and accuracy of < ± 0.1% (2SEM) are discussed in detail. Published lead isotopic measurements of gasoline-derived anthropogenic lead of samples throughout the United States are used to demonstrate the wide geographic range over which the ALAS Model may be applied. Two representative case studies involving an early 1970s free product release in California and the discrimination of a 1970s from modern unleaded gasoline release in Florida demonstrate the use of the model on single and multiple hydrocarbon releases, respectively, in different geographic regions of the United States. A third investigation focuses on the use of lead isotopes to correlate dissolved phase hydrocarbons with their source, in this case, unleaded (aka low lead) gasoline releases in New Jersey. Dissolved phase hydrocarbons (BTEX/MTBE) are shown to carry the lead isotopic signature of the unleaded gasoline into groundwater, allowing the specific source of the release to be identified. Investigations of lead isotopes as tracers of MTBE in groundwater are ongoing. However, both laboratory and field data indicate MTBE carries the lead isotopic signature of its unleaded gasoline source into groundwater, demonstrating the potential of the lead isotopic system as a discriminant of MTBE sources. Although developed to estimate the age of leaded gasoline releases, the ALAS Model has been successfully applied in studies requiring age dating of jet-A, diesel, kerosene, motor oil, and heating oil. These petroleum distillates are suspected of accidentally acquiring small, yet significant quantities of alkylleads during refining, allowing accurate ALAS Model ages to be determined. When lead levels in these petroleum distillates are within their normal range, typically tens to hundreds of ppb lead, it is possible to use lead isotopic ratios to correlate environmental releases of these products to their source or other releases.  相似文献   

2.
《Environmental Forensics》2013,14(2):145-162
Investigators, regulators, and litigants having interest in gasoline hydrocarbon releases are almost always concerned with knowing when a release occurred. Gasoline releases to the subsurface have, historically, been the most difficult to age date because of their volatile nature and highly aromatic composition. Age dating of gasolines in the past has depended on the degree of weathering of the lower boiling hydrocarbons in gasoline, the use and disuse of lead, lead isotopes, the use of other additives such as methyl-tertiary-butyl ether, and major refining and formulation changes. However, these approaches are limited and many times difficult to demonstrate and apply. This paper describes a new age dating technique using gas chromatographic data. It is based on the progressive enhancement of the aromatics and the reduction of the normal alkanes (paraffins) in the manufacture of regular and mid-grade gasolines since the 1970s. The changing composition of gasoline was necessary to maintain octane ratings during the removal of lead from the gasoline and while meeting increasingly stringent air quality regulations over the past 30 years. This paper proposes the use of an index that reflects these changes in gasoline composition over time and can be correlated to when the gasoline was manufactured. The resulting curve can be used to estimate the age of release (manufacture) of gasolines. This forensic application can be successfully applied to liquid gasoline samples where the evaporation of the gasoline is less than 50%. Case histories and examples are presented to demonstrate application of the technique.  相似文献   

3.
A variety of additives are used in gasoline, and they can sometimes be used to help identify the source, timing, or number of gasoline spills at a site. The physicochemical characteristics of the additive MTBE, and its historical use pattern in the United States since 1979, make it a key compound to study when conducting forensic investigations of gasoline spills. MTBE's low octanol: water distribution coefficient and high solubility cause it to dissolve into groundwater more readily than other gasoline components. Thus, the initial appearance of MTBE in the groundwater is often a good indicator of a recent gasoline spill. MTBE's very low retardation and minimal biodegradation in groundwater can be used with transport rate calculations to establish relatively accurate estimates of spill timing. Because MTBE moves faster in groundwater than BTEX compounds, if a gasoline spill site has a BTEX plume that is longer than the MTBE plume, it is certain that at least two distinctly different gasoline releases have occurred. This allows for the identification of new gasoline spills, even when substantial subsurface petroleum contamination already exists. An example application is reviewed to demonstrate the use of MTBE data in forensic investigations.  相似文献   

4.
A variety of additives are used in gasoline, and they can sometimes be used to help identify the source, timing, or number of gasoline spills at a site. The physicochemical characteristics of the additive MTBE, and its historical use pattern in the United States since 1979, make it a key compound to study when conducting forensic investigations of gasoline spills. MTBE's low octanol : water distribution coefficient and high solubility cause it to dissolve into groundwater more readily than other gasoline components. Thus, the initial appearance of MTBE in the groundwater is often a good indicator of a recent gasoline spill. MTBE's very low retardation and minimal biodegradation in groundwater can be used with transport rate calculations to establish relatively accurate estimates of spill timing. Because MTBE moves faster in groundwater than BTEX compounds, if a gasoline spill site has a BTEX plume that is longer than the MTBE plume, it is certain that at least two distinctly different gasoline releases have occurred. This allows for the identification of new gasoline spills, even when substantial subsurface petroleum contamination already exists. An example application is reviewed to demonstrate the use of MTBE data in forensic investigations.  相似文献   

5.
本文简要介绍了汽油添加剂MTBE对环境的污染及减少MTBE污染机理研究的进展 ,同时介绍了对我国汽油生产的影响  相似文献   

6.
The recent controversy over the use of MTBE within gasoline to boost oxygen content and decrease carbon monoxide emissions to the atmosphere has led to a proposed phase-out of this compound by 2002. This paper is a preliminary investigation into the use of gas chromatography isotope-ratio mass spectrometry (GCIRMS) to determine both carbon and hydrogen isotopic compositions of MTBE as a means of differentiating sources of MTBE. Three pure MTBE samples were purchased from chemical distributors. Little variation of the i 13 C values were observed although the samples had isotopically distinct i -D values. Four different methods of obtaining carbon isotope ratios of neat MTBE, MTBE in gasoline, and MTBE in water are described, and the precision and accuracy of each is discussed. The carbon isotopic compositions of MTBE within 10 gasoline samples from three different areas of the United States show a wide range of carbon isotope compositions. This novel method of MTBE analysis could be valuable in forensic investigations.  相似文献   

7.
The recent controversy over the use of MTBE within gasoline to boost oxygen content and decrease carbon monoxide emissions to the atmosphere has led to a proposed phase-out of this compound by 2002. This paper is a preliminary investigation into the use of gas chromatography isotope-ratio mass spectrometry (GCIRMS) to determine both carbon and hydrogen isotopic compositions of MTBE as a means of differentiating sources of MTBE. Three pure MTBE samples were purchased from chemical distributors. Little variation of the δ13C values were observed although the samples had isotopically distinct δ-D values. Four different methods of obtaining carbon isotope ratios of neat MTBE, MTBE in gasoline, and MTBE in water are described, and the precision and accuracy of each is discussed. The carbon isotopic compositions of MTBE within 10 gasoline samples from three different areas of the United States show a wide range of carbon isotope compositions. This novel method of MTBE analysis could be valuable in forensic investigations.  相似文献   

8.
《Environmental Forensics》2013,14(4):319-329
Accidental spills and chronic leaks of fuel oil or other hydrocarbon material (e.g., coal tar) often result in subsurface accumulation of nonaqueous phase liquid (NAPL), which can be a subsequent source of contamination in groundwater. Linking hydrocarbons in groundwater to a source NAPL has been difficult when using standard target analytes (e.g., BTEX) because of differences in partitioning properties of the analytes between the source NAPL and groundwater. Because aqueous solubility is predicted to be the controlling influence in the partitioning of hydrocarbons from NAPL to groundwater, a solubility-based approach to matching dissolved hydrocarbons in groundwater to their source NAPL has been developed and validated for two sites with commonly encountered types of NAPL contamination. Specifically, a gasoline LNAPL and a coal tar DNAPL from two separate sites (West Virginia and California) and groundwater interfaced with these NAPLs were analyzed for approximately 50 gasoline-range hydrocarbons consisting of paraffin, isoparaffin, (mono-) aromatic, naphthene, and olefin compounds (PIANO). Solubility characteristics of selected alkyl aromatic hydrocarbons from the PIANO analysis were used to identify a set of diagnostic hydrocarbons, expressed as hydrocarbon ratios, which were found to be useful in distinguishing the source(s) of hydrocarbons in groundwater. At the West Virginia site, the diagnostic ratios in a downgradient groundwater sample were similar to those of a gasoline NAPL at that site, indicating the source of hydrocarbons to the groundwater was the upgradient gasoline NAPL. The diagnostic ratios of the groundwater in contact with the gasoline NAPL and the remote groundwater were also similar, providing evidence that the diagnostic ratios were retained during transport in the aquifer. At the California site, diagnostic ratios in a cross-gradient groundwater sample differed from those of the coal tar NAPL at that site, indicating that the remote groundwater hydrocarbons did not originate from the coal tar contamination. Environmental factors such as selective degradation of specific isomers and various geological conditions (e.g., soil mineralogy, and organic content) may confound the application of this solubility-based fingerprinting approach. Thus, it is recommended that multiple diagnostic pairs be simultaneously evaluated when considering this fingerprinting approach for specific sites and product types.  相似文献   

9.
Methyl tert -butyl ether (MTBE) is an octane-enhancer and oxygenate compound that was authorized as a gasoline additive by the U.S. Environmental Protection Agency (USEPA) in late 1979. MTBE has many chemical and physical properties that make it a desirable compound for these purposes. However, the aqueous solubility of MTBE, which is in the 50,000 ppm range, allows it to dissolve into groundwater where it is transported virtually without retardation. MTBE also is resistant to microbial degradation and does not air-strip from water efficiently. These characteristics have caused wells to become contaminated with MTBE that in the absence would not have become contaminated with hydrocarbons from gasoline releases. Research on innovative technologies to treat water contaminated with MTBE is underway. The final regulatory determination of allowable concentrations and whether or not future use of MTBE will be allowed has yet to be made.  相似文献   

10.
The new millennium ushers in changes for refiners of automobile gasoline in the United States, as well as for the state and federal regulators who establish guidelines for gasoline formulation and environmental regulation governing the fate of gasoline-related chemicals in the nation's air, soil and groundwater. One current issue in the gasoline formulation debate centers on the comparison of the proven benefits of the addition of chemical oxygenates—especially methyltert -butyl ether (MTBE)—to gasoline (to improve tailpipe emission quality) against the presumed environmental problems caused by the presence of oxygenates in ground- and surface waters due to fugitive releases of gasoline. Credible debate on this subject presumes that current and past environmental monitoring data for MTBE in environmental samples is accurate and precise. Experience suggests that this assumption is not correct, in part because certain analytical methodologies—particularly older methods supported by the U.S. Environmental Protection Agency—can fall short of reasonable data quality goals for measurement of MTBE. This Technical Note summarizes the standard EPA methods available to site investigators who need to measure MTBE in environmental media, the limitations and advantages of these measurement techniques, and recommendations for improving these standard EPA methods to yield the highest quality MTBE environmental residue data.  相似文献   

11.
《Environmental Forensics》2013,14(3):175-189
During the last decade, the fuel oxygenate methyl tertiary butyl ether (MTBE) has received widespread attention as a potential threat to water quality, primarily due to leaking underground gasoline storage tanks and watercraft with two-stroke engines. In this article, we examine the annual detection frequency, number of new source detections, and concentration of MTBE detected in California's public drinking water groundwater and surface water sources from 1995 to 2002. This work builds on our previous evaluations of California's water quality monitoring database. However, it is unique in that it includes separate evaluations for groundwater and surface water sources that are of greatest concern to regulators, and which are likely being used for current public consumption. Our evaluations also include full-year data for 2002 (which have not been published previously) and an analysis of how the sampling and reported detections of MTBE vary by geographic location. We find that MTBE was generally detected (at any level) in approximately 0.5-0.9% and 0.2-0.4% of all groundwater sources assuming a one-detection and two-detection criterion, respectively. The overall detection frequency for MTBE in surface water sources is significantly higher than for groundwater sources, although these surface water detections appear to have substantially declined since 1996 (e.g., 7-9% for all surface water sources during 1996 to 1999 and 4% for all surface water sources during 2000 to 2002, assuming a one-detection criterion). The detection frequency of MTBE concentrations at or above the state drinking water standards in all drinking water sources (both groundwater and surface water sources) and the subset of drinking water sources that are likely to currently be delivered to consumers is markedly lower (and often zero). Despite the significant increase in water sampling over time, the number of new drinking water sources found to contain MTBE in California has not increased at the same rate and appears to have remained relatively stable or to have decreased since 1998. The data also show that nearly all of the 58 counties in California have routinely sampled at least some of their groundwater and surface water sources for MTBE over the last 8 years. Geographical evaluations show that MTBE has been detected (at least once) in groundwater sources in 34 counties and in surface water sources in 18 counties but has only been detected routinely (i.e., for 3 or more years) in 16 and 7 counties, respectively. Detected concentrations of MTBE are also generally below state drinking water standards, particularly for surface water sources. In short: (1) MTBE is rarely found in California groundwater or surface water sources that are of greatest concern to regulators or the public, and (2) drinking water detections of MTBE are expected to decline in the future due to the pending phase-out of MTBE and recent regulatory programs aimed at controlling gasoline releases from underground storage tanks and two-stroke-engine watercraft.  相似文献   

12.
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The delta(13)C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of -31.3 +/- 0.5 per thousand (n=40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in (13)C of MTBE by 40.6 per thousand, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 microg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of delta(13)C for TBA in groundwater samples in the "With ethanol lane" was -26.0 +/- 1.0 per thousand (n=32). Uniform delta(13)C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of -9.2 per thousand to -15.6 per thousand, and values of delta(13)C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year(-1) (n=18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year(-1) calculated using contaminant mass-discharge for the "With ethanol lane".  相似文献   

13.
Emissions from a 1988 GM Corsica with adaptive learning closed loop control were measured with 4 fuels at 40, 75, and 90 degrees F. Evaporative and exhaust emissions were examined from each fuel at each test temperature. Test fuels were unleaded summer grade gasoline; a blend of this gasoline containing 8.1 percent ethanol; a refiner's blend stock; and the blend stock containing 16.2 percent methyl tertiary butyl ether. The ethanol and MTBE blends contained 3.0 percent oxygen by weight. Regulated emissions (total hydrocarbons, carbon monoxide, and oxides of nitrogen), detailed aldehydes, detailed hydrocarbons, ethanol, MTBE, benzene, and 1,3-butadiene were determined. The highest levels of regulated emissions were produced at the lower temperature. Blended fuels produced almost twice the evaporative hydrocarbon emissions at high temperatures as did the base fuels. Benzene emissions varied with fuels and operating temperatures, while 1,3-butadiene emissions decreased slightly with increasing temperatures. Formaldehyde emissions were not sensitive to fuel or temperature changes. Ethanol fuel blend total aldehyde emissions increased by 40 percent due to increased acetaldehyde emissions. Fuel blends had approximately a 3 percent economy decrease. The MTBE fuel blend appeared to offer the most reduction in total hydrocarbon, carbon monoxide, and oxides of nitrogen for the fuels and temperatures tested.  相似文献   

14.
Emissions from a 1988 GM Corsica with adaptive learning closed loop control were measured with 4 fuels at 40, 75, and 90° F. Evaporative and exhaust emissions were examined from each fuel at each test temperature. Test fuels were unleaded summer grade gasoline; a blend of this gasoline containing 8.1 percent ethanol; a refiner’s blend stock; and the blend stock containing 16.2 percent methyl tertiary butyl ether. The ethanol and MTBE blends contained 3.0 percent oxygen by weight. Regulated emissions (total hydrocarbons, carbon monoxide, and oxides of nitrogen), detailed aldehydes, detailed hydrocarbons, ethanol, MTBE, benzene, and 1, 3-butadiene were determined.

The highest levels of regulated emissions were produced at the lower temperature. Blended fuels produced almost twice the evaporative hydrocarbon emissions at high temperatures as did the base fuels. Benzene emissions varied with fuels and operating temperatures, while 1, 3-butadiene emissions decreased slightly with increasing temperatures. Formaldehyde emissions were not sensitive to fuel or temperature changes. Ethanol fuel blend total aldehyde emissions Increased by 40 percent due to increased acetaldehyde emissions.

Fuel blends had approximately a 3 percent economy decrease. The MTBE fuel blend appeared to offer the most reduction in total hydrocarbon, carbon monoxide, and oxides of nitrogen for the fuels and temperatures tested.  相似文献   

15.
Oxygenates present in gasoline, such as ethanol and MTBE, are a concern in subsurface contamination related to accidental spills. While gasoline hydrocarbon compounds have low solubility, MTBE and ethanol are more soluble, ethanol being completely miscible with water. Consequently, their fate in the subsurface is likely to differ from that of gasoline. To evaluate the fate of gasoline containing oxygenates following a release in the unsaturated zone shielded from rainfall/recharge, a controlled field test was performed at Canadian Forces Base Borden, in Ontario. 200L of a mixture composed of gasoline with 10% ethanol and 4.5% MTBE was released in the unsaturated zone, into a trench 20cm deep, about 32cm above the water table. Based on soil cores, most of the ethanol was retained in the source, above the capillary fringe, and remained there for more than 100 days. Ethanol partitioned from the gasoline to the unsaturated pore-water and was retained, despite the thin unsaturated zone at the site (~35cm from the top of the capillary fringe to ground surface). Due to its lower solubility, most of the MTBE remained within the NAPL as it infiltrated deeper into the unsaturated zone and accumulated with the gasoline on top of the depressed capillary fringe. Only minor changes in the distribution of ethanol were noted following oscillations in the water table. Two methods to estimate the capacity of the unsaturated zone to retain ethanol are explored. It is clear that conceptual models for sites impacted by ethanol-fuels must consider the unsaturated zone.  相似文献   

16.
Total lead (Pb) concentration and Pb isotopic ratio (206Pb/207Pb) were determined in 140 samples from the Seine River basin (France), covering a period of time from 1945 to 2011 and including bed sediments (bulk and size fractionated samples), suspended particulate matter (SPM), sediment cores, and combined sewer overflow (CSO) particulate matter to constrain the spatial and temporal variability of the lead sources at the scale of the contaminated Seine River basin. A focus on the Orge River subcatchment, which exhibits a contrasted land-use pattern, allows documenting the relation between hydrodynamics, urbanization, and contamination sources. The study reveals that the Pb contamination due to leaded gasoline that peaked in the 1980s has a very limited impact in the river nowadays. In the upstream Seine River, the isotopic ratio analysis suggests a pervasive contamination which origin (coal combustion and/or gasoline lead) should be clarified. The current SPM contamination trend follows the urbanization/industrialization spatial trend. Downstream of Paris, the lead from historical use originating from the Rio Tinto mine, Spain (206Pb/207Pb?=?1.1634?±?0.0001) is the major Pb source. The analysis of the bed sediments (bulk and grain size fractionated) highlights the diversity of the anthropogenic lead sources in relation with the diversity of the human activities that occurred in this basin over the years. The “urban” source, defined by waste waters including the CSO samples (206Pb/207Pb?=?1.157?±?0.003), results of a thorough mixing of leaded gasoline with “historical” lead over the years. Finally, a contamination mixing scheme related to hydrodynamics is proposed.  相似文献   

17.
In this paper, the treatment of real groundwater samples contaminated with gasoline components, such as benzene, toluene, ethylbenzene, and xylene (BTEX), methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and other gasoline constituents in terms of total petroleum hydrocarbons as gasoline (TPHg) by an ozone/UV process was investigated. The treatment was conducted in a semi-batch reactor under different experimental conditions by varying ozone gas dosage and incident UV light intensity. The groundwater samples contained BTEX compounds, MTBE, TBA, and TPHg in the ranges of 5-10000, 3000-5500, 80-1400, and 2400-20000mugl(-1), respectively. The ozone/UV process was very effective compared to ozonation in the removal of the gasoline components from the groundwater samples. For the various gasoline constituents, more than 99% removal efficiency was achieved for the ozone/UV process and the removal efficiency for ozonation was as low as 27%. The net ozone consumed per mol of organic carbon (from BTEX, MTBE, and TBA) oxidized varied in the range of 5-60 for different types of groundwater samples treated by the ozone/UV process. In ozonation experiments, it was observed that the presence of sufficient amount of iron in groundwater samples improved the removal of BTEX, MTBE, TBA, and TPHg.  相似文献   

18.
During Fall 1996, epiphytic lichens were collected along altitudinal sections in two areas of France (the Vosges mountains in the North-East, and the Alps, in Haute-Savoie) in order to verify any geographic distribution of atmospheric metals on a small scale. These lichens have various Pb isotopic compositions (206Pb/207Pb=1.126–1.147) which are correlated with the altitude of sampling. Lichens sampled near valleys display isotopic ratios significantly less radiogenic than those sampled at several hundred to thousand meters of altitude. In the Vosges sections, Pb concentrations and isotopic compositions of lichens may be used to define three zones: (1) valley: Pb-rich and non-radiogenic ratios, (2) transition: low-Pb and intermediate isotopic compositions, (3) mountain: heterogeneous Pb concentrations but more radiogenic and homogeneous Pb isotopic composition. Other metals (Zn, Cu, Cd, As), when normalised one to another, are not fractionated between these zones and display homogeneous relative abundance along the altitudinal sections of both sites. Variation of 206Pb/207Pb ratios with altitude is interpreted in terms of mixing of at least two pollution sources: one being the petrol (leaded and/or unleaded) combustion, and the other being of industrial origin. The latter is characterised by a more radiogenic isotopic composition. The Pb isotopic composition of flue gas residues from different municipal solid waste combustors in the Rhine valley and in other areas of France would suggest that these plants might be an important source of industrial Pb in the atmosphere. If the average industrial Pb in France has a 206Pb/207Pb close to 1.15, between 60 and 80% of the total Pb in lichens from the Rhine valley would come from gasoline combustion, whereas 85–90% of the Pb would have an industrial origin in lichens from higher altitude in the Vosges mountains. Although lichens from the Alps were collected at higher altitude, the percentage of industrial Pb for these lichens would be slightly lower (65%). Major winds and convection winds in the different valleys must then play an important role in term of distribution of atmospheric Pb in function of altitude.  相似文献   

19.
In order to characterize airborne lead in eastern and central Russian cities in terms of lead isotope ratios, aerosol samples were collected at six selected cities and Moscow, and their lead concentrations and isotope ratios were studied by comparing them to the data of ore lead used in Russia. All eastern Russian cities (Vladivostok, Khabarovsk and Yakutsk) were found to have isotope ratios similar to those of ore leads in Kazakhstan, the major lead producer for Russia. Samples collected in Moscow also showed isotope ratios similar to those of eastern Russian cities. The contribution from coal combustion to airborne lead was considered to be small even in winter, in these cities. This observation suggested that the origin of lead in these Russian atmosphere regions is closely related to the lead products (e.g. leaded gasoline). The lead isotope ratios in three eastern Russian cities were very close to the value for Russian air mass reported previously in Japan, which were also in good agreement with the same observation in Sweden. However, considerably different lead isotope ratios were observed in central Russian cities, Kemerovo and Nizhnevartovsk, indicating that specific lead emissions, such as industrial activities using Precambrian-age ores or unique leaded gasoline, might contribute to the atmospheric lead.  相似文献   

20.
In this work, the primary objective was to assess the impact of oxygenated fuel on the exhaust emissions from an important fraction of vehicles in the Metropolitan Area of Mexico City (MAMC). The results aim to provide information on the actual effect of MTBE on a fleet that represents more than 60% of the in-use vehicles in the MAMC. Ten vehicles were tested with a low-octane base gasoline, and 10 more with a regular-grade unleaded base gasoline. Three MTBE concentrations, 5, 10, and 15 vol %, were tested following the U.S. Federal Test Procedure (FTP). CO, total HC, and NOx from the exhaust gases were quantitatively evaluated and also characterized for FTP speciated organic emissions. From this data, the O3-forming potential of the fuels was calculated. Results show that for the fleet using low-octane gasoline, the addition of 10% MTBE substantially reduced CO emissions, but total HC concentration in the exhaust showed a modest decrease. For the regular gasoline, the 10% MTBE blend seemed to be the best choice, but there was not a significant decrease in emissions. The specific reactivity of each fuel, expressed in grams of O3 per gram of nonmethane organic gases, increased with MTBE concentration in both cases. This result is important to consider, especially for a region like Mexico City, which has high atmospheric O3 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号