首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 484 毫秒
1.
三峡水库干流倒灌对支流库湾营养盐分布的影响   总被引:6,自引:0,他引:6  
三峡水库蓄水后,库区普遍存在干流水体倒灌支流的现象。为探明干流倒灌对支流库湾水动力学特性及其营养盐分布的影响规律,于2010年对库区4条典型支流库湾水流速度、水深、总氮(TN)、总磷(TP)等进行了监测。监测结果表明,干支流以异重流形式进行水体交换;大宁河、磨刀溪、小江3条支流库湾水体TN、TP浓度均低于干流水体;香溪河库湾水体TN浓度同样低于干流水体,但库湾上游水体TP浓度高于干流水体;受干流倒灌影响,支流库湾水体主要营养盐空间分布不均,营养盐浓度高的干流水体倒灌进入库湾,对其影响范围内的支流水体的营养盐起到补给作用。  相似文献   

2.
三峡水库支流回水河段氮磷负荷与干流的逆向影响   总被引:13,自引:0,他引:13       下载免费PDF全文
通过分析三峡库区大宁河回水河段氮磷的来源、数量及时空特征,研究三峡水库成库初期和稳定运行期,次级支流回水段受干流的逆向影响.结果表明,成库初期,支流回水段的氮磷分配特征初步呈现干流逆向影响效应,分别有19.05%TN、28.93%TP源于干流倒灌输入;由于干流顶托作用,氮磷呈现具峰值的空间分布特征.在稳定运行期,支流回水段的氮磷来源及数量将明显受干流逆向影响,在其中的藻类适宜生长期,大宁河回水段干流倒灌输入的TN、TP分别高出上游径流输入近3倍、10倍,明显高于成库初期.当运行水位从145m升至175m时,支流回水段纳受干流倒灌输入的TN、TP可分别达15484.99、1185.75t.研究表明,干流逆向影响可能加剧三峡水库水体的富营养化.  相似文献   

3.
三峡水库建成以后,梅溪河库湾多次发生水华现象,为研究干流水体倒灌对库湾营养盐的影响,于2012年8月至2013年7月对受干流回水影响的梅溪河进行了详细的现场监测.结果表明,三峡水库在不同的水位调度时期,梅溪河库湾水体均表现为分层异向流动;受长江干流倒灌影响,梅溪河库湾营养盐分布季节变化显著,DIN的年倒灌净通量约为5 478.02 t,DIP的年倒灌净通量约为234.04 t,DSi的年倒灌净通量约为5 935.22 t,长江干流每年对梅溪河DIN、DIP、DSi的补给量分别约为源头输入量的2.37倍、4.32倍和1.33倍;干流倒灌对库湾营养盐分布的影响不仅局限在河口区域,对梅溪河中上游的营养盐分布也将造成影响,干流倒灌对库湾P的补给将对库湾P限制起到缓解作用,为藻类的暴发提供必要条件.  相似文献   

4.
大宁河水生态系统健康评价   总被引:3,自引:3,他引:0       下载免费PDF全文
随着人口增长及社会经济的发展,河流水生态系统健康受到严重威胁.为了解大宁河水生态系统健康状况,选取大宁河2011-2015年水体水质[水温、pH、SD(透明度)、ρ(DO)、ρ(CODMn)、ρ(TN)、ρ(TP)]与水生态[藻密度、ρ(Chla)]9个主要指标,构建了大宁河水生态系统健康评价指标体系,运用基于熵值法的综合健康指数法对其水体生态系统健康状况进行综合评价.结果表明,2011-2015年,大宁河水生态系统健康状况整体呈亚健康状态,有50.89%的监测样本处于亚健康状态,枯水期健康状态好于丰水期.大宁河各监测断面CHI(综合健康指数)值的季节变化特征为丰水期低于枯水期;年际变化特征为从2011-2015年CHI值呈先升后降的变化趋势,健康状态呈先转好后转差的变化趋势,大宁河水体富营养化趋势明显;空间变化特征为丰水期和枯水期CHI最低值主要位于中下游的白水河、龙门和菜子坝断面,河流水质与人类活动强度密切相关.研究显示,影响大宁河水生态系统健康的关键因子为营养盐指标[ρ(TN)、ρ(TP)]和有机物指标[ρ(CODMn)].   相似文献   

5.
分层异重流对香溪河库湾主要营养盐补给作用分析   总被引:9,自引:0,他引:9  
为弄清分层异重流对三峡水库支流库湾主要营养盐的补给过程,通过分析2011年7月19日香溪河库湾常量离子、营养盐等监测数据,利用物质守恒规律,借用常量离子Cl-估算了分层异重流倒灌水量,计算了香溪河上游径流和水库干流倒灌对回水区氮、磷、硅负荷的贡献.研究表明:水库干流中的Na+、Cl-、K+、Ca2+、SO24-等离子浓度比香溪河上游径流高,在香溪河库湾中自河口至上游逐渐降低,Mg2+相反;SO24-、Cl-、Na+等离子空间分布差异显著,能够作为示踪离子;水库干流倒灌流量与上游径流流量比为12.59∶1;由长江干流倒灌输入的TN、TP、D-Si通量分别为54.97、3.53和221.90 t.d-1,香溪河上游径流输入通量依次为3.00、0.57和10.02 t.d-1;干流倒灌输入TN、TP、D-Si贡献率分别高达94.83%、86.13%和95.68%,沿河口逆向上游,干流倒灌对香溪河库湾营养盐的补给作用逐渐减小.  相似文献   

6.
汉江中下游干流水质状况时空分布特征及变化规律   总被引:4,自引:0,他引:4       下载免费PDF全文
汉江是南水北调中线工程的水源区,其中下游水质状况是国家和湖北省政府重点关注的饮用水安全问题.研究南水北调中线工程影响区汉江中下游干流的水质状况和特征,为进一步分析工程运行对汉江中下游水质的影响奠定基础.收集了汉江中下游干流11个水质监测站2011—2014年pH、ρ(DO)、ρ(CODMn)、ρ(BOD5)、ρ(NH3-N)、ρ(TP)、ρ(TN)等7项水质指标,应用水污染指数法和层次聚类分析法,综合辨识2011—2014年汉江中下游干流的水环境时空变化特征.结果表明:①2011—2014年汉江中下游干流水质整体上为GB 3838—2002《地表水环境质量标准》的Ⅳ类~劣Ⅴ类水体,超标指标为ρ(TN)、ρ(TP)、ρ(BOD5),其中ρ(TN)超标最严重.②为深入辨识TN负荷对研究区域水质的影响,通过情景分析发现控制ρ(TN)可有效改善汉江中下游干流水质状况.③汉江中下游干流水质状况层次聚类分析表明,在时间上将研究时段分为2类,基本对应于汉江中下游的汛期和非汛期;在空间上将水质监测断面(沈湾、泽口、新沟、宗关、转斗、皇庄、汉南村、石剅、白家湾、余家湖、罗汉闸)分为3类,其中第3类可细分为3个子类,各子类所对应的水质监测断面与其空间分布基本对应.④汉江中下游干流富营养化严重,其中ρ(TP)和ρ(TN)在非汛期分别呈显著降低和增加趋势,汛期无明显变化.研究显示,江汉中下游污染严重,营养盐尤其丰富且ρ(TN)为主要影响因素.   相似文献   

7.
为分析不同分层水库沉积物间隙水氮营养盐垂向分布差异的原因,通过监测香溪河库湾、长江干流和小湾水库3种水域上覆水-间隙水环境特征,分析了不同分层水域沉积物间隙水氮营养盐垂向分布特征,并探讨了造成3种水域沉积物间隙水氮营养盐分布差异的原因.结果表明:①长江干流与香溪河库湾沉积物间隙水ρ(TN)随深度逐渐升高,而小湾水库ρ(TN)在12 cm处达到最大,底层呈"C"型分布;长江干流和香溪河库湾沉积物间隙水ρ(NH~+_4)随深度呈升高趋势,小湾水库底层含量略高于表层,整体上无显著变化,且长江干流与香溪河库湾ρ(NH~+_4)整体上高于小湾水库,浓度变化范围分别为:0.512~8.289、 0.968~9.307和0.950~1.500mg·L~(-1); 3个水域沉积物间隙水ρ(NO~-_3)垂向分布特征均与ρ(NH~+_4)相反,且香溪河库湾与长江干流ρ(NO~-_3)高于小湾水库,浓度变化范围分别为:0.143~0.674、 0.107~0.647和0.050~0.051mg·L~(-1);②3种水体理化指标垂向分布特征也存在明显差异.长江干流水温垂向无明显变化,垂向稳定系数N~25×10~(-5) s~(-2),水体混合均匀,溶解氧垂向变化范围为:6.180~6.318mg·L~(-1);香溪河库湾中上游水温垂向上呈降低趋势,下游水温呈阶梯状分布,N~2均大于5×10~(-5) s~(-2),处于稳定分层状态,溶解氧呈"C"型分布特征;小湾水库在水深5~15 m和54~70 m出现明显分层,溶解氧在水温梯度较大处显著降低, 80 m后,沿水深无明显变化;③上覆水水动力、溶解氧分布以及沉积物环境差异是造成3种水域间隙水氮营养盐垂向分布差异的主要原因,且香溪河库湾间隙水氨氮和硝氮含量较高,可能提高反硝化速率,进而有助于水域脱氮,减少水域氮负荷.  相似文献   

8.
三峡水库典型支流不同时期的水质污染特征及其影响因素   总被引:2,自引:0,他引:2  
为探究三峡水库特殊调度运行模式下支流水质分布特征及其主要影响因素,以库区一级支流香溪河和神农溪为例,于2018年7月(汛期)和10月(蓄水期)现场采样分析,利用水质指数(WQI)法进行水质评估和水质特征分析,并综合三维水动力观测资料、干支流水量交换分析识别水质变化的驱动因素.结果表明:①影响香溪河和神农溪WQI的主要参数为TN、NH4+-N,且两支流WQI在7月为63~69,水质一般;10月为74~82,水质良好.水质在10月显著好于7月(p<0.01),两支流间的WQI无显著差异(p>0.05);另外,WQI在中间段要大于近河口和近上游段.②长江干流倒灌水体对支流水质的好坏起主导作用.汛期倒灌强度小但倒灌水体营养盐浓度较大,会增加支流营养盐浓度;蓄水期倒灌强度大但倒灌水体营养盐浓度较小,会稀释支流营养盐浓度.③支流流域面源污染协同加剧支流水质污染.汛期降雨驱动了面源污染的增加,在多因素共同作用下支流库湾TN、NH4+-N在7月的累积量高于10月.研究结果可为当地水环境管理和治理提供方向,丰富大型河道型水库水环境演变相关科学认识.  相似文献   

9.
干流倒灌异重流对香溪河库湾营养盐的补给作用   总被引:13,自引:10,他引:3  
三峡水库蓄水以来,其支流库湾每年均暴发严重的春季水华.为研究三峡水库支流营养盐受干流的逆向影响,于2010年对三峡水库库首区域最大的支流香溪河库湾水流特点及总氮、总磷的时空动态分布进行了详细监测.研究发现库湾水体表现为分层异向流动,存在明显的倒灌异重流现象,分别以表、中、底3种形式倒灌入香溪河库湾;特定的水流特性为库湾营养物质的运输提供了水动力基础,香溪河河口处由干流倒灌输入总氮、总磷的平均瞬时通量分别为501.92 g.s-1、48.17 g.s-1,在2010年干流倒灌输入香溪河库湾的总氮、总磷污染负荷分别占总量的43.4%、21.5%.结果表明,倒灌输入的总氮、总磷占有很大的比例,同时加强三峡水库支流及干流上游流域污染控制才是有效控制支流水华发生的根本途径.  相似文献   

10.
入湖污染河流对受纳湖湾水质的影响   总被引:17,自引:2,他引:15       下载免费PDF全文
为研究滇池重污染湖湾——福保湾的污染现状及入湖污染河流对湖湾水质的影响,并为福保湾污染底泥固化技术示范工程提供基础数据,在福保湾布设15个采样点,采集并分析表层水中营养元素氮、磷的含量. 结果表明,福保湾氮、磷等营养元素含量的空间分布规律明显,入湖河流污染负荷对湖湾水质有较大影响. 河口附近水域水质较差,ρ(TP)高达0.7 mg/L,以不溶的颗粒态磷为主;ρ(TN)为7 mg/L左右,其中的50%以上以NH3-N的形态存在. 随与河口间距离的增加,上覆水中ρ(TN)和ρ(TP)逐渐降低. 在距河口300 m的水域范围内,ρ(TN)和ρ(TP)的空间分布规律与A.B.卡拉乌舍夫扩散模型计算结果相符.   相似文献   

11.
三峡水库蓄水后,库区众多支流下游形成库湾回水区,这些库湾回水区是库区水环境调整最为活跃的地区.为了探究支流库湾对于库区生源要素循环及物质通量的作用和意义,于2012年8月~2013年7月对草堂河库湾、相邻干流、支流上游水体中溶解态无机氮(DIN)、溶解态无机磷(DIP)、溶解态硅酸盐(DSi)的时空分布进行逐月现场观测.结果表明,草堂河库湾回水区营养盐的浓度与库区干流相近,二者的月变化趋势也高度一致.干流输入是库湾DIN、DIP、DSi的主要来源.草堂河库湾与干流连通性很好,干支流水体交换迅速且充分,其影响可到达库湾回水区的末端.春、夏季,干流输入的营养盐通过表层生产力在库湾截留,秋、冬季库湾中的营养盐释放并输送到干流.营养盐在库湾的这种循环过程,在一定程度上改变了库区干流不同季节营养盐输送的节律.库区支流库湾众多,其对干流物质通量的季节调配作用不容忽视.  相似文献   

12.
为研究三峡水库春季水体营养盐与浮游植物的空间分布状况,于2013年3月对三峡水库22条支流及干流的6个断面进行采样监测. 结果表明:来水、回水、河口和干流4类断面ρ(TN)平均值分别为1.69、1.84、2.01、1.51 mg/L;ρ(TP)平均值分别为0.115、0.191、0.179和0.181 mg/L;不同类型断面间ρ(TN)、ρ(TP)差异不显著;水体中N、P的主要形态分别为NO3--N和PO43--P;N/P〔n(N)/n(P)〕从来水(110.8)至干流(18.9)逐渐降低. 三峡水库总体上为中营养状态,回水和河口区富营养化程度较高,富营养断面比例分别为45.4%和36.4%. 研究期间共检出浮游植物8门98属,其中以绿藻门、硅藻门和蓝藻门为主,分别检出42、26和17属;从组成上看,来水和干流断面以硅藻-绿藻为主,回水、河口断面以绿藻-硅藻为主. 浮游植物丰度由高到低依次为回水、河口、来水和干流断面. 调查期间,22条支流中有15条支流在不同位置发生水华,但主要集中在回水区;拟多甲藻水华为主要类型且集中在库区的下游支流,而库区中上游支流则以隐藻、衣藻、小球藻、小环藻等水华为主. 环境因子排序分析表明,在水华集中的回水-河口区域,影响浮游植物丰度分布的主要环境因子数明显少于其他区域,温度和ρ(DO)为该区域浮游植物丰度分布的主要影响因子,而ρ(TN)、ρ(TP)的影响不明显.   相似文献   

13.
三峡水库支流大宁河冬、春季水华调查研究   总被引:11,自引:5,他引:6  
以三峡水库主要支流--大宁河冬、春季2次不同类型水华的调查数据为依据,分析并比较了不同水华期间水质的变化、营养盐的构成及水华的特征.结果表明,大宁河冬季水华以唐家湾为中心,叶绿素a(Chl-a)含量较高[(Chl-a)_(max)/(Chl-a)_(min)=260];随着藻类的生长总氮(TN)、总磷(TP)和高锰酸盐指数出现富集而含量升高,溶解氧(DO)和pH却出现低值;水华高峰期水体藻类较少,共发现2门4种,水华优势种为铜绿微囊藻和水华微囊藻,藻密度高达3.15×10~7个/L,相关加权综合营养状态指数为80,属于重度富营养化水体.而春季水华属于自回水段以下整体性暴发,Chl-a含量也较高[(Chl-a)_(max)/(Chl-a)_(min)=140];TN、TP和高锰酸盐指数均是随着水华的发生逐渐升高;水华高峰期藻类种群丰富,共发现5门44种,各断面水华优势种和藻密度均不同,相关加权综合营养状态指数显示东坪坝和白水河为轻度富营养化水体.相关性分析表明,冬季水华期间Chl-a与TN、TP、高锰酸盐指数、水温呈显著正相关,与DO、透明度(SD)呈显著负相关;春季水华Chl-a与TP、高锰酸盐指数、DO、pH呈显著正相关,与SD呈显著负相关.冬季水华pH与SD呈显著正相关,与TN、TP、高锰酸盐指数呈显著负相关;而春季水华pH与Chl-a、TP、高锰酸盐指数、DO、气温呈显著正相关,与SD呈显著负相关.  相似文献   

14.
三峡库区大宁河藻细胞昼夜垂直迁移研究   总被引:4,自引:3,他引:1  
张永生  郑丙辉  姜霞  郑浩  钟娜  陈春宵 《环境科学》2012,33(11):3787-3796
旨在准确为三峡库区藻华预警提供基础数据,本研究于2011年7月底在三峡库区大宁河流域进行藻细胞昼夜垂直迁移试验.结果表明,大宁河在此期间,藻细胞主要以绿藻、蓝藻、硅藻和甲藻为主;藻细胞在水体中的分布不均匀,72.5%~76.2%的藻细胞集中在0.5~4.0 m水体之间,0~0.5 m处藻细胞较少,占垂直水体藻密度的7.5%~16.3%,白天藻细胞Morisita指数(MI)为1.41~1.97,夜晚MI指数为1.17~1.55,叶绿素a白天MI指数为1.31~1.59,而夜晚MI指数为1.17~1.39.藻细胞在水体中存在明显的昼夜垂直迁移现象,该现象主要发生在0.5~4.0 m水体之间.水体中的藻密度受营养盐的影响较小,与可溶解性总磷显著相关(r=0.89),藻密度主要受温度、pH值和导电率影响,藻密度与温度、pH值和导电率呈极显著相关,相关系数分别为0.96、0.97和-0.99.  相似文献   

15.
A yearlong monitoring program in the backwater area of Xiaojiang River (XBA) was launched in order to investigate the eutrophication of backwater areas in tributaries of the Yangtze River in the Three Gorges Reservoir (TGR) in China, starting after the impoundment water level of the TGR reached 156 m. From March 2007 to March 2008, the average concentration of total nitrogen (TN) and total phosphorus (TP) were (1553±484) μg·L−1 and (62±31) μg·L−1, respectively. The mean value of chlorophyll was (9.07±0.91) μg·L−1. The trophic level of XBA was meso-eutrophic, while the general nutrient limitation was phosphorus. The results indicated that XBA has a strong ability to purify itself and has non-point source pollution from terrestrial runoff. The variation of TN/TP ratio was caused by a variation in TN rather than in TP when TN/TP < 22. N-fixation from cyanobacteria occurred and became an important process in overcoming the nitrogen deficit under a low TN/TP ratio. When TN/TP ⩾ 22, the variation of TP affected the TN/TP ratio more significantly than TN. The increase of TP in XBA was caused mainly by particulate phosphorus, which could originate from a non-point source as adsorptive inorganic forms after heavy rainfall and surface runoff. An increase in the river’s flow could also contribute to an unstable environment for the growth of phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号