首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
利用苏州市2014年4月18日—5月6日空气质量监测资料,分析了苏州市大气中PM10和PM2.5的小时变化规律、日变化规律及其与温度、风速的气象相关性,研究其在空间上的分布,探讨PM10和PM2.5之间的相关性。结果表明:苏州市大气中PM10每小时质量浓度呈双峰分布,上午8∶00左右和下午20∶00左右出现峰值特征,而PM2.5每小时质量浓度呈单峰分布,只在上午8∶00左右出现峰值。PM10和PM2.5的每日变化规律相似,有周期性且周期为3~4d。在空间分布上,PM10质量浓度从高到低的排列顺序是:商业混合区居民区工业区交通干线远郊区,PM2.5质量浓度为:工业区交通干线居民区商业混合区远郊区。PM10和PM2.5两者之间存在显著相关性。  相似文献   

2.
为了解深圳市坪山新区环境空气质量现状,研究运用坪山新区PM2.5浓度数据,分析该区PM2.5的污染特征及气象条件对其的影响,坪山新区PM2.5浓度呈现了明显的季节变化、月变化特征,表现为秋冬季高、夏季低、春季居中的特点;PM2.5浓度最高出现在12月,最低出现在7月.该区PM2.5浓度日间变化呈双峰分布,7:00~9:00出现短期高峰,夜间21:00~次日4:00出现长期高峰.坪山新区PM2.5超标情况多出现在秋冬季及初春.在超标日期里,区域一般温度较低、风速较小,相对湿度也较低.污染源分析模型结果表明,坪山新区PM2.5的排放强度高值区主要集中在北部和西部,南部和东部排放强度稍低.由此可见,坪山新区大气环境亟待提升,需要针对区域内大气颗粒物污染进行有效防治.  相似文献   

3.
北京市大气中PM10和PM2.5的污染水平特征研究   总被引:7,自引:0,他引:7  
2004-2005年在北京市区和背景点进行了PM10和PM2.5质量浓度监测,结果表明,市区和背景点的PM质量浓度有季节特性,采样点的PM2.5/PM10的季节平均变化值相差不大,市区采样点的PM质量浓度普遍要比背景采样点高,和洛杉矶、悉尼等奥运城市相比,北京市PM10 比这些奥运城市高3~5倍,PM2.5高2倍左右,说明北京市的大气污染水平还相当严重.  相似文献   

4.
为了解西安市高新区采暖期大气颗粒物(包括PM1 0和PM2.5)污染状况,于2013年1月1日到2013年3月15日在高新区进行了为期74 d的连续自动采样。结果表明:采样期间高新区PM1 0的小时浓度范围28~1744μg/m3,平均浓度为332μg/m3;PM2.5的小时浓度范围13~946μg/m3,平均浓度为207μg/m3。PM2.5占PM1 0的平均比例为63.8%。颗粒物浓度日变化呈现弱双峰特征,分别在凌晨2:00和上午7:00~8:00左右达到浓度最高值,但是上午的峰值并不明显。颗粒物在15:00~1 6:00之间浓度达到最低值,由于受采暖影响,18:00之后颗粒物浓度明显上升。  相似文献   

5.
随着我国工业化、城市化和机动化的高速发展,大气环境质量越来越受民众关注,我国已建成国控—省控—市控—县控四级环境空气自动监测网络,监测项目包括SO2、NO2、CO、O3、PM2.5和PM10.基于2018年绵阳市环境空气监测数据、颗粒物化学组分及气象资料分析上述6个监测项目年均、季度、月均、日均及每日最大小时浓度变化特征,并进一步探讨污染物浓度与气象条件的相关性,结合颗粒物化学组分对产生原因进行剖析.结果表明:绵阳市冬季环境空气质量较差,夏季相对较好.Pearson相关性分析表明:SO2、NO2、CO和颗粒物(PM2.5和PM10)之间存在显著相关性,冬季PM2.5与SO2、NO2的相关系数分别为0.610和0.635,PM10与SO2、NO2的相关系数分别为0.655和0.655,颗粒物主要化学组分为硫酸盐、硝酸盐、铵盐和二次有机气溶胶,颗粒物二次转化尤为明显,冬季需重点管控颗粒物;春季和夏季O3与PM2.5、PM10呈显著正相关,需做好颗粒物和O3的协同管控.O3每日最大小时浓度多集中在13:00?—?18:00,其他污染物每日最大小时浓度多集中于08:00?—?12:00和20:00?—?24:00,同时NO2在20:00?—?24:00出现每日最大小时浓度的频次占67.1%,控制机动车等污染源排放尤为重要.  相似文献   

6.
收集了采暖季太原市环境监测中心站公布的PM2.5和其它污染物(PM10、SO2、NO2、CO和O3)逐时监测数据,分析了PM2.5的月、日及小时浓度分布特征和变化规律,结果表明:太原市采暖季PM2.5的小时浓度范围为9~364μg/m^3,日浓度范围为19~ 208 μg/m^3,PM2.5最大日均值出现在2014年1月份,PM2.5小时浓度日变化规律呈单峰双谷趋势,PM2.5与PM10比值在0.30~0.77之间,二者相关性显著,相关系数为0.925.  相似文献   

7.
梁俊宁  王浩  高敏  王珊 《环境工程》2016,34(9):89-94
为了解地下停车场细颗粒物分布特征,通过连续监测西安市某地下停车场不同位置细颗粒物小时浓度并采集PM2.5和PM10样品,计算各测点PM2.5和PM10日均浓度。同时对停车场出入口每小时的车流量进行统计,分析细颗粒物浓度与车流量之间的关系。结果表明:该停车场进出车辆具有明显的时间规律,工作日上班高峰期07:00—09:00出口车辆较多,17:00—21:00入口车辆较多,休息日出口峰值出现在09:00—12:00,入口高峰期出现在19:00—23:00,其余时段进出车辆较少。各测点PM2.5小时浓度值在0.004~0.477 mg/m3,平均为0.082 mg/m3,日平均浓度在0.043~0.090 mg/m3,平均为0.057 mg/m3,PM10日均值浓度为0.083~0.348 g/m3,平均为0.189 mg/m3。停车场出入口细颗粒物浓度与车流量之间呈现正相关性,颗粒物浓度在出入口和车流经过频繁的点位较高且细颗粒物所占比重较小(50%)。  相似文献   

8.
广州市PM_2.5和PM_1.0质量浓度变化特征   总被引:4,自引:1,他引:3  
文章报道了2005年干季和2006年湿季广州市大气细粒子PM2.5和PM1.0质量浓度的实时监测情况。监测结果表明:干季监测点PM2.5日均质量浓度在11.8~164.0μg/m3之间,总平均值为81.7μg/m3;湿季日均质量浓度在19.9~121.2μg/m3之间,总平均值为57.7μg/m3。干季PM1.0日均质量浓度变化范围为14.9~129.1μg/m3,总平均值为59.4μg/m3;湿季日均质量浓度在11.9~86.7μg/m3之间,总平均值为52.9μg/m3。对比发现,PM1.0总平均质量浓度在干、湿季相差很小,且与湿季PM2.5总平均质量浓度也相差不大,显示PM1.0具有相对固定成因来源且基本不受季节变化影响,而且湿季PM2.5的组成主要由PM1.0大气细粒子构成。干季PM2.5和PM1.0质量浓度日变化特征呈明显夜间高、白天低的特点,质量浓度的最大值都出现在晚上21:00左右;湿季由于雨水频繁,没有明显的日变化特征。气象分析表明,干季大气细粒子质量浓度主要受冷空气影响,而湿季主要受降雨影响。  相似文献   

9.
根据昆明市2017年大气污染物PM2. 5和PM10的监测数据,对PM2. 5和PM10浓度的变化特征和PM2. 5占PM10的比重以及二者的相关性进行分析。结果表明:PM2. 5和PM10质量浓度冬春季明显高于夏秋季,且PM2. 5冬季的浓度最高为33. 25μg/m3,PM10春季污染物浓度最高为68. 24μg/m3; PM2. 5和PM10质量浓度峰值出现在上午9∶00和凌晨1∶00,谷值出现在下午16∶00和17∶00; PM2. 5/PM10比值范围在0. 436~0. 558,冬季均值最高为0. 505,表明冬季污染物中PM2. 5比例高; PM2. 5和PM10日均值有着非常显著的线性相关关系,相关系数方值R2为0. 853。  相似文献   

10.
张春辉  徐鹏 《环保科技》2022,28(1):23-26,36
利用2019年1月1日至12月31日贵阳市能见度、相对湿度(RH)和PM2.5浓度逐时观测资料,分析了能见度与相对湿度及PM2.5浓度的关系.结果表明:夏季贵阳市相对湿度与PM2.5浓度较低,能见度较高,冬季则相反;能见度日变化为单峰型分布:06:00时左右最低,16:00时左右最高,与相对湿度呈反向变化.能见度与RH...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号