首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
Recently, we reported on soil fate of SDZ residues amended with pig manure treated with 1?C-labeled sulfadiazine 1?C-SDZ). The first objective of the present study was to determine whether this strategy can be substituted by application of 1?C-SDZ to soil. The second objective was to characterize non-extractable SDZ residues by fractionation, size exclusion chromatography (SEC) and solid state 13C-NMR. The fate of 1?C-SDZ was examined for 28 d, using two soils with and without amendment of pig manure. Mineralization of 1?C-SDZ was low; extractable residues decreased to 7-30%. Compared to the previous study, results were similar. 1?C-SDZ derived bound radioactivity was found in HCl-washings, fulvic, humic acids and humin. According to SEC, one bound 1?C portion (70%) co-eluted with fulvic acids (above 910 g mol?1); the other consisted of adsorbed/entrapped 1?C-SDZ. The 13C-SDZ study was performed for 30 d; humic acids were examined by 13C-NMR. A signal (100-150 ppm) was referred to 13C-SDZ. SEC and 13C-NMR demonstrated rapid integration of SDZ into humics.  相似文献   

2.
Okamura H  Sugiyama Y 《Chemosphere》2004,57(7):739-743
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) is a herbicide analogue that is added to antifouling agents used on ships. Our former study on its degradation in sunlight suggested that unknown photosensitizers in natural waters accelerated the photodegradation to the degradation product, M1. In this study, the photodegradation of Irgarol in water was investigated in the presence of some photosensitizers. Test water containing Irgarol or M1, with or without photosensitizers, was irradiated with light from a UV-A fluorescent lamp for 48h. The concentrations of Irgarol and M1 in the test water were determined by HPLC after solid-phase extraction. M1 was more stable than Irgarol when irradiated in the presence of photosensitizers such as acetone, benzophenone, tryptophan, and rose bengal. Hydrogen peroxide (HP) accelerated the photodegradation of Irgarol, and the product M1 was degraded in the presence of more than 100mgl(-1) HP after 10h. Natural humic substances (NHS) also accelerated the photodegradation of Irgarol, but in this case, the product M1 persisted even when Irgarol was completely degraded. Photosensitized degradation of Irgarol by NHS may result in the accumulation of M1 in aquatic environments.  相似文献   

3.
Concerning the transport of the veterinary antibiotic sulfadiazine (SDZ) little is known about its possible degradation during transport. Also its sorption behaviour is not yet completely understood. We investigated the transport of SDZ in soil columns with a special emphasis on the detection of transformation products in the outflow of the soil columns and on modelling of the concentration distribution in the soil columns afterwards. We used disturbed soil columns near saturation, packed with a loamy sand and a silty loam. SDZ was applied as a 0.57 mg L(-1) solution at a constant flow rate of 0.25 cm h(-1) for 68 h. Breakthrough curves (BTC) of SDZ and its transformation products 4-(2-iminopyrimidin-1(2H)-yl)aniline and 4-hydroxy-SDZ were measured for both soils. For the silty loam we additionally measured a BTC for an unknown transformation product which we only detected in the outflow samples of this soil. After the leaching experiments the (14)C-concentration was quantified in different layers of the soil columns. The transformation rates were low with mean SDZ mass fractions in the outflow samples of 95% for the loamy sand compared to 97% for the silty loam. The formation of 4-(2-iminopyrimidin-1(2H)-yl)aniline appears to be light dependent and did probably not occur in the soils, but afterwards. In the soil columns most of the (14)C was found near the soil surface. The BTCs in both soils were described well by a model with one reversible (kinetic) and one irreversible sorption site. Sorption kinetics played a more prominent role than sorption capacity. The prediction of the (14)C -concentration profiles was improved by applying two empirical models other than first order to predict irreversible sorption, but also these models were not able to describe the (14)C concentration profiles correctly. Irreversible sorption of sulfadiazine still is not well understood.  相似文献   

4.
Andreozzi R  Raffaele M  Nicklas P 《Chemosphere》2003,50(10):1319-1330
The presence of pharmaceutical compounds in surface waters is an emerging environmental issue. Sewage treatment plants (STPs) are recognized as being the main point discharge sources of these substances to the environment. A monitoring campaign of STP effluents was carried out in four European countries (Italy, France, Greece and Sweden). More than 20 individual pharmaceuticals belonging to different therapeutic classes were found. For six selected pharmaceuticals (carbamazepine, diclofenac, clofibric acid, ofloxacin, sulfamethoxazole and propranolol) present in the STP effluents, the persistence towards abiotic photodegradation was evaluated submitting them to solar experiments at 40° N latitude during spring and summer. Based on experimentally measured quantum yields for the direct photolysis in bi-distilled water, half-life times (t1/2) at varying seasons and latitude were predicted for each substance. In salt- and organic-free (bi-distilled) water carbamazepine and clofibric acid are characterized by calculated half-life times of the order of 100 days at the highest latitudes (50° N) in winter, whereas under the same conditions sulphamethoxazole, diclofenac, ofloxacin and propranolol undergo fast degradation with t1/2 respectively of 2.4, 5.0, 10.6 and 16.8 days. For almost all studied compounds, except propranolol the presence of nitrate ions in aqueous solutions results in a reduction of t1/2. When present, humic acids act as inner filters towards carbamazepine and diclofenac, and as photosensitizers towards sulphamethoxazole, clofibric acid, oflaxocin and propranolol.  相似文献   

5.
Quan X  Zhao X  Chen S  Zhao H  Chen J  Zhao Y 《Chemosphere》2005,60(2):266-273
Enhancement of p,p'-DDT photodegradation on soil surfaces using TiO2 induced by UV-light was mainly investigated in this work. After being spiked with p,p'-DDT, soil samples loaded with different doses of TiO2 (0%, 0.5%, 1%, 2%, and 3% wt) were exposed to UV-light irradiation for 24 h. The results indicated that the photodegradation of p,p'-DDT followed the pseudo-first-order kinetics. TiO2 accelerated the photodegradation of p,p'-DDT significantly as indicated by the half-life reduction from 23.3 h to 10.4 h, corresponding to the TiO2 content from 0% to 3% respectively. In addition, the effects of soil pH, photon flux and humic substances on p,p'-DDT degradation were investigated. The photodegradation rate increased with the increase of the soil pH and photon flux. The humic substances (2% wt) inhibited the p,p'-DDT photodegradation by reducing the amount of light available to excite the p,p'-DDT and TiO2 or by quenching radicals capable of oxidizing p,p'-DDT. p,p'-DDE, p,p'-DDD and DDMU were main degradation intermediates and they were further degraded in the presence of TiO2.  相似文献   

6.
The data presented in this paper emphasize that the behavior and fate of pesticides in the environment is influenced by humic substances. Various methods most frequently used for the characterization of humic substances are discussed. Both humic acid and fulvic acid can solubilize in water certain organic compounds and are important carriers of some pesticides in soil. Humic substances have the potential for promoting the nonbiological degradation of many pesticides. Several methods of bleaching humus color from drinking water, including chlorination, ozonation, and UV-radiation, are described. Finally, the photochemical stability to UV-radiation of certain pesticides in aqueous fulvic acid solution is discussed.  相似文献   

7.
The influence of dissolved humic substances on the transport of (4-chloro-2-methylphenoxy) acetic acid (MCPA) in a sandy soil with a low organic carbon content was studied in a column experiment. Soil columns were eluted with aqueous solutions containing different fractions of humic substances. More than 70% of the applied compound was found in the leachate in all sandy soil experiments, but distinct differences were obtained depending on the composition of the eluent. The addition of both humic and fulvic acids to the eluent affected the leaching behaviour of MCPA. While the presence of humic acids increased and accelerated the movement of MCPA in the investigated sandy soil, fulvic acids caused the opposite effect: increased retention was observed relative to the control. We concluded that a possible carrier transport or retention strongly depends on the composition of the dissolved organic matter. Thus, changes in the composition of dissolved organic matter may affect MCPA movement into deeper soil layers.  相似文献   

8.
Abstract

The data presented in this paper emphasize that the behavior and fate of pesticides in the environment is influenced by humic substances. Various methods most frequently used for the characterization of humic substances are discussed. Both humic acid and fulvic acid can solubilize in water certain organic compounds and are important carriers of some pesticides in soil. Humic substances have the potential for promoting the nonbiological degradation of many pesticides. Several methods of bleaching humus color from drinking water, including chlorination, ozonation, and UV‐radiation, are described. Finally, the photochemical stability to UV‐radiation of certain pesticides in aqueous fulvic acid solution is discussed.  相似文献   

9.
The photochemical persistence of quinalphos, one of the most widely used organophosphorous insecticides, was investigated in a variety of environmental matrices such as natural waters and soils of different composition. Simulated solar irradiation was obtained using a xenon arc lamp (Suntest CPS+ apparatus) giving an irradiation intensity of 750 W m(-2) equivalent to a light dose per hour of irradiation of 2,700 kJ m(-2). The phototransformation rates were determined using solid-phase microextraction (SPME) and ultrasonic extraction (USE) coupled to GC-FTD, while the identification of photoproducts was carried out by GC-MS. In water samples, the degradation kinetics followed a pseudo-first-order reaction and photolysis half-lives ranged between 11.6 and 19.0 h depending on the constitution of the irradiated media. Dissolved organic matter (DOM) has a predominant retarding effect, while nitrate ions accelerated the photodegradation kinetics. In soil samples, the degradation kinetics was monitored on 1mm soil layer prepared on glass TLC plates. The kinetic behaviour of quinalphos was complex and characterized by a double step photoreaction, fast in the first 4h of irradiation followed by a slow degradation rate up to 64 h. The photolysis half-life of quinalphos was shorter in sandy soil compared to the rest of the soil samples, varying between 16.9 and 47.5 h, and showing a strong dependence on the composition of the irradiated media. Among the transformation products formed mainly through photohydrolysis and photoisomerization processes, some photoproduct structures were proposed according to their mass spectral information.  相似文献   

10.
The photodegradation of imazethapyr [2-(4,5-dihydro-4-méthyl-4-(1-méthylethyl)-5-oxo-1H-imidazol-2-yl)-5-ethyl-3-pyridinecarboxylic acid] in aqueous solution in the presence of titranium dioxide (TiO2) and humic acids (HA) at different ratios of herbicide/TiO2 and herbicide/humic acids was studied at pH 7.0. Irradiation was carried out with polychromatic light using Heraeus apparatus equipped with xenon lamp to simulate sunlight having a spectral energy distribution similar to solar irradiation (>290 nm). The concentration of remaining herbicide was followed using a High Pressure Liquid Chromatograph (HPLC) equipped with UV detector at 230 nm. In pure aqueous solution imazethapyr degrades slowly and the photodegradation leads to the formation of two metabolites labelled A and B. The presence of TiO2 caused enhancement of the degradation rate. The presence of HA induced an increase of the photodegradation of the pesticide with respect to pure aqueous solution.  相似文献   

11.
Photodegradation of chlorothalonil was studied in different natural waters (sea, river and lake) as well as in distilled water under natural and simulated solar irradiation. The effect of dissolved organic matter (DOM) such as humic and fulvic substances on the photodegradation rate of chlorothalonil was also studied in simulated sunlight. The presence of DOM enhanced the photodegradation of chlorothalonil with the exception of seawater. The kinetics were determined through gas chromatography electron capture detection (GC/ECD) and the photodegradation proceeds via pseudo-first-order reaction in all cases. Half-life ranged from 1 to 48 h. In natural and humic water chlorothalonil photodegradation gave rise to two different intermediates compared to distilled water demonstrating that the transformation of chlorothalonil depend on the constitution of the irradiated media and especially from DOM. The byproducts identified by GC/MS techniques were: chloro-1,3-dicyanobenzene, dichloro-1,3-dicyanobenzene, trichloro-1,3-dicyanobenzene and benzamide.  相似文献   

12.
The humic monomer catechol was reacted with (14)C-isoproturon and some of its metabolites, including (14)C-4-isopropylaniline, in aqueous solution under a stream of oxygen. Only in the case of (14)C-4-isopropylaniline, incorporation in oligomers, in fulvic acid-like polymers, and in humic acid-like polymers by covalent bonds was observed. The main oligomer was identified by mass spectrometry as a trimer, 4,5-bis-(4-isopropylphenylamino)-3,5-cyclohexadiene-1,2-dione. Biomineralization of (14)C-compounds to (14)CO(2) in a loamy soil and release of (14)C from soil columns into percolate water decreased in the order: free isoproturon >free 4-isopropylaniline>fulvic acid-like polymers>trimer>humic acid-like polymers. In soil columns, a small but measurable migration of (14)C from polymers from upper to deeper soil layers could be detected; most of this (14)C was bound again in a non-extractable form. It is concluded that aniline-derived pesticides bound in soil by covalent binding may not be fully undegradable, nor fully immobile.  相似文献   

13.
The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe3+ ions was investigated. Algae, humic acid and Fe3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4h irradiation in the presence of 6.5 x 10(9) cells L(-1) raw Chlorella vulgaris, 4 mg L(-1) humic acid and 20 micromol L(-1) Fe3+. The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water.  相似文献   

14.
Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.  相似文献   

15.
This article describes the photolysis of azithromycin, a macrolide antibiotic with reported occurrence in environmental waters, under simulated solar radiation. The photodegradation followed first-order reaction kinetics in five matrices examined. In HPLC water, the degradation rate was the slowest (half-life: 20 h), whereas in artificial freshwater supplemented with nitrate (5 mg L−1) or humic acids (0.5 mg L−1) the degradation of azithromycin was enhanced by factors of 5 and 16, respectively, which indicated the role of indirect photolysis involving the formation of highly reactive species. Following chromatographic separation on a UPLC system, the characterization of the transformation products was accomplished using high-resolution QqToF-MS analysis. The presence of seven photoproducts was observed and their formation was postulated to originate from (bis)-N-demethylation in the desosamine sugar, O-demethylation in the cladinose sugar, combinations thereof, as well as from hydrolytic cleavages of the desosamine and/or cladinose residue. Two of these photoproducts could also be detected in natural photodegradation process in river water which was spiked with azithromycin.  相似文献   

16.
溶液中阴离子和腐殖酸对UV/H2O2降解2,4-二氯酚的影响   总被引:2,自引:0,他引:2  
研究了UV/H2O2工艺对2,4-二氯酚(2,4-DCP)的去除效果和水中阴离子、腐殖酸对该工艺降解2,4-DCP的影响.结果表明:UV/H2O2工艺可以有效地去除水中2,4-DCP,光降解过程符合一级反应动力学模型;在H2O2投加量为8 mg/L、1个30 W低压汞灯照射下,2,4-DCP在蒸馏水和自来水中反应速率常数分别为0.023 2、0.016 2 min-1;NO-3、Cl-、HCO-3对2,4-DCP光降解有抑制作用,当3种阴离子摩尔浓度为0.5、10.0、20.0 mmol/L时,对2,4-DCP光降解的抑制程度为HCO-3>NO-3>Cl-;腐殖酸在低浓度时,促进光降解反应进行,在高浓度时,2,4-DCP的光降解受到抑制.自来水中的反应速率常数低于蒸馏水中的反应速率常数是由于水中多种阴离子和腐殖酸影响的结果.  相似文献   

17.
Penoxsulam is a triazolopyrimidine sulfonamide group of rice herbicide. The phototransformation of penoxsulam was studied under UV light (lambda max >or= 290 nm) and sunlight in aqueous methanol and acetonitrile solvent system using TiO2 as sensitizer. The rate of photodegradation of penoxsulam in different solvent systems followed first-order kinetics and calculated half-lives was found to be in the range of 51.89-73.41 h and 62.70-97.09 h for UV light and sunlight respectively in the presence or absence of sensitizer. From this study, a total of six photoproducts were identified and characterized on the basis of Q-Tof micromass spectral data. The plausible mechanism of phototransformation involved were hydrolysis, photo oxidation of the sulfonamide group, breaking of sulfonamide bond, loss of amino and sulfonic acid group.  相似文献   

18.
The humic acid (HA) fraction of a food and vegetable residues compost (CM) was taken as indicator to trace the fate of CM organic matter in four years CM amended soil. (1)H and (13)C NMR spectroscopy were used to investigate the nature of the HA isolates from CM, control soil (S(4)) and amended soil. The result indicated a significant structural difference between CM HA and S(4) HA, and supported the presence of both HA fractions in soil at the end of the amendment trials. However, the nature and content of CM HA in soil did not fully explain the increase of soil cation exchange capacity (CEC) after amendment. All CM humic fractions (i.e., fulvic acid, humic acid and humin) were found to contribute to the change of the soil organic matter composition. It is concluded that although CM HA is a suitable indicator of the survival of compost organic matter in soil during amendment, all three humic fractions should be monitored and analyzed to fully understand changes in the composition and properties of amended soil.  相似文献   

19.
Si Y  Zhou J  Chen H  Zhou D  Yue Y 《Chemosphere》2004,56(10):967-972
The photodegradation of the herbicide bensulfuron-methyl on dry soil surfaces in the presence and absence of humic substances was investigated under Xe lamp irradiation. A rapid rate of disappearance occurs in the humus-removed soil. The presence of humic acid (HA) and fulvic acid (FA) reduces degradation rates and has a quenching effect on the photodecomposition of bensulfuron-methyl. The quenching effect increases with increasing HA and FA concentration in soil. HA has a slightly greater ability to quenching the photolysis compared to FA. In addition, co-effects of HA and FA on quenching the photolysis are stronger than single effects of HA or FA.  相似文献   

20.
The fate of (14)C-labeled sulfadiazine ((14)C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (A(p) horizon of loamy sand, orthic luvisol; A(p) horizon of silt loam, cambisol) amended with fresh and aged (6 months) (14)C-manure [40 g kg(-1) of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with (14)C-SDZ. Mineralization of (14)C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable (14)C (ethanol-water, 9:1, v/v) decreased with time to 4-13% after 218 days of incubation with fresh and aged (14)C-manure and both soils. Non-extractable residues were the main route of the fate of the (14)C-SDZ residues (above 90% of total recovered (14)C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the (14)C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl(2) solution) also decreased with increasing incubation period (5-7% after 218 days). Due to thin-layer chromatography (TLC), 500 microg of (14)C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh (14)C-manure, and about 50 microg kg(-1) after 218 days. Bioavailable (14)C-SDZ portions present in the CaCl(2) extracts were about 350 microg kg(-1) with amendment. Higher concentrations were initially detected with aged (14)C-manure (ethanol-water extracts: 1,920 microg kg(-1); CaCl(2) extracts: 1,020 microg kg(-1)), probably due to release of (14)C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the (14)C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble (14)C-SDZ residues contained in (14)C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZ's non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号