首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study was carried out to develop a vulnerability map for Barka region in the North Batina of Oman using DRASTIC vulnerability index method in GIS environment. DRASTIC layers were created using data from published reports and the seven DRASTIC layers were processed by the ArcGIS geographic information system. Finally, DRASTIC maps were created for 1995 and 2004 to understand the long-term changes in the vulnerability index. DRASTIC vulnerability maps were evaluated using groundwater quality data such as chemical and biological parameters. DRASTIC vulnerability maps of 1995 and 2004 indicate that the northern part of Barka is more vulnerable to pollution than southern part and the central part of Barka also shows high relative vulnerability which is mostly related to the high conductivity values. Moreover, the changes in water level due to high abstraction rate of groundwater reflect in the vulnerability maps and low vulnerability area is increased in the southern part during 2004 compared to 1995. Moreover, regional distribution maps of nitrate, chloride and total and fecal coliforms are well correlated with DRASTIC vulnerability maps. In contrast to this, even though DRASTIC method predicted the central part of the study region is highly vulnerable, both chemical and biological parameters show lower concentrations in this region compared to coastal belt, which is mainly due to agricultural and urban development. In Barka, urban development and agricultural activities are very high in coastal region compared to southern and central part of the study area. Hence, this study concluded that DRASTIC method is also applicable in coastal region having ubiquitous contamination sources.  相似文献   

2.
Geographic information system (GIS) has become one of the leading tools in the field of hydrogeological science that helps in assessing, monitoring, and conserving groundwater resources. Groundwater is a finite resource, which is being overexploited due to increase in demand over the years leading to decrease in its potentiality. In the present study, DRASTIC model has been used to prepare groundwater vulnerable zone in hard rock aquifer of granitic terrain. The main objective is to determine susceptible zone for groundwater pollution by integrating hydrogeological layers in GIS environment. The layers such as depth of aquifer, recharge, aquifer yield, soil type, topography, vadose zone, and transmissivity are incorporated in the DRASTIC model. The final output of the map shows that around 60% of the area falls under low to no risk of pollution zone. The high risk of pollution zones are mostly present towards the margin of southeastern periphery. The lower part of the basin as well as small area on northern side falls under moderate risk of pollution zone. For the assessment of groundwater pollution zone, 24 groundwater samples have been collected from different vulnerable zones. The chemical analysis of sample shows that the southeastern margin of basin has relatively high concentration of nitrate as compared to other parts of the basin. It is present in high pollution zone as well as moderate pollution zone. The present model can be used for assessment and management of groundwater.  相似文献   

3.
This study examines the uncertainty associated with two commonly used GIS-based groundwater vulnerability models, DRASTIC and EPIK, in assessing seawater intrusion, a growing threat along coastal urban areas due to overexploitation of groundwater resources. For this purpose, concentrations of Total Dissolved Solids (TDS) in groundwater samples at three pilot areas along the Eastern Mediterranean were compared with mapped vulnerability predictions obtained through DRASTIC and EPIK. While field measurements demonstrated high levels of groundwater salinity depending on the density of urbanization, both vulnerability assessment methods exhibited a limited ability in capturing saltwater intrusion dynamics. In the three pilot areas, DRASTIC was only able to predict correctly between 8.3 and 55.6% of the salinity-based water quality ranges, while EPIK's predictions ranged between 11.7 and 77.8%. This emphasizing that conventional vulnerability models perform poorly when anthropogenic impacts induce lateral flow processes such as seawater intrusion caused primarily by vertical groundwater extraction.  相似文献   

4.
For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.  相似文献   

5.
The purpose of the present study was to evaluate the groundwater contamination due to the construction and operation of the municipal landfill of Amari, Rethymno, Crete. The groundwater flow and leachate transport in the vadose and saturated zones were studied and simulated, using three different models: the one-dimensional groundwater flow and contaminant transport model for the vadose zone Pesticide Root Zone Model (PRZM-3), the Geographical Information System (GIS) Argus ONE and the three-dimensional groundwater flow and contaminant transport model Princeton Transport Code (PTC). The simulation time was 30 and 20 years, and the results obtained, according to the models and the existing hydrogeological conditions, were very encouraging and reassuring about the groundwater quality of the broad region.  相似文献   

6.
Parameterization strategy impacts models' outputs and the associated uncertainty. This is particularly true for transient regional groundwater models where parameters can only be weakly constrained by insufficient observations. However, this is rarely investigated under any particular model structure. This study bridges this gap using a regional groundwater model developed to understand the impact of coal seam gas extraction on groundwater systems in a probabilistic framework. Two different parameterization schemes were implemented for hydraulic conductivity and specific storage. The first method solely relies on the relationship between hydraulic properties and burial depths. The second more complex strategy allows more spatial variations of hydraulic parameters using pilot points. The study provides new insights and practical guidance on the application of groundwater modelling for environmental impact assessment. The results suggest that the choice of model parameterization has a significant influence on predictive uncertainty. The model using the simple parameterization provides predictions with a much wider range than the model with a more sophisticated parameterization. This is because that the lowly parameterized model tends to generate more extreme effective hydraulic parameter fields unless the parameterization simplification converts the inverse problem to a (close to) well-posed problem that rarely exists for applied regional groundwater modelling. The potential impact of model parameterization should be discussed explicitly in groundwater modelling applications to support decision making to avoid misinterpretation of the modelling results.  相似文献   

7.
Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology.  相似文献   

8.
Groundwater vulnerability assessments provide a measure of the sensitivity of groundwater quality to an imposed contaminant load and are globally recognized as an essential element of all aquifer management and protection plans. In this paper, the vulnerability of groundwaters underlying the Yinchuan Plain of Northwest China is determined using OREADIC, a GIS-based assessment tool that incorporates the key characteristics of the universally popular DRASTIC approach to vulnerability assessment but has been modified to consider important additional hydrogeological factors that are specific to the region. The results show that areas of high vulnerability are distributed mainly around Qingtongxia City, Wuzhong City, Lingwu City, and Yongning County and are associated with high rates of aquifer recharge, shallow depths to the water table, and highly permeable aquifer materials. The presence of elevated NO3 in the high vulnerability areas endorses the OREADIC approach. The vulnerability maps developed in this study have become valuable tools for environmental planning in the region and will be used for predictive management of the groundwater resource.  相似文献   

9.
Demand for groundwater for drinking, agricultural, and industrial purposes has increased due to rapid increase in population. Therefore, it is imperative to assess the groundwater potential of different areas, especially in a fragile wetland ecosystem to select appropriate sites for developing well fields to minimize adverse environmental impacts of groundwater development. This study considers East Calcutta Wetlands (ECW)??a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems developed by local people through ages, using wastewater of the city. The subsurface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades, and sand mixed with occasional gravels and thin intercalations of silty clay. Groundwater occurs mostly under confined condition except in those places where the top aquitard has been obliterated due to scouring action of past channels. The groundwater in the study area is being over-extracted at the rate of 65 × 103 m3/day. Overlay analysis in Geographic Information System platform using multiple criteria such as water quality index, hydraulic conductivity, groundwater velocity, and depth to piezometric surface reveals that in and around ECW, there are five groundwater potential zones. About 74% of the aquifer of this area shows very poor to medium groundwater potential. Management options such as minimization of groundwater abstraction by introducing the treated surface water supply system and the implementation of rainwater harvesting and artificial recharge in high-rise buildings and industries are suggested for different potential zones.  相似文献   

10.
Investigation has been made to identify groundwater vulnerability to pollution by using geoelectric and hydrochemical investigations in an important industrial town Mettur located in Tamilnadu state of India. Schlumberger vertical electric soundings were carried out in 23 locations and groundwater samples collected from bore wells in the same locations. The resistivity value with <20 Ωm up to a depth of 36 m indicate contamination of groundwater in areas influenced by sewages from industries, domestic and agricultural practices in the central and southern part of the study area. The calculated specific conductance was noted higher than EC in central and southern part of the study area with low resistivity indicating the contaminated nature of groundwater. Concentrations of Ca, Na, Mg and K along with Cl, HCO(3), SO(4) and NO(3) were higher in certain locations when compared with WHO and ISI standards. The facies concept demarcated four groups based on the nature of groundwater contamination. The trace elements Fe and Pb were higher in locations confined to industrial zones and Zn and Cu were within the prescribed limit in all the samples.  相似文献   

11.
This study explores the associations of pesticide occurrence in groundwater to geological characteristics of the monitoring points (MPs) contributing area. Pesticide analyses were undertaken during a 2-year groundwater monitoring campaign which generated 845 samples. MCPA and mecoprop were the most frequently detected pesticides in groundwater. Each MP (n?=?158) had a specifically delineated zone of contribution (ZOC) and the dominant physical characteristics present from nine national datasets were recorded for each ZOC. Associations between detections in groundwater and the dominant physical characteristic in each MPs ZOC tested were then statistically analyzed using Fisher’s exact test, logistic regression, and multiple logistic regression. The original physical characteristic datasets used that were associated with detections in groundwater were the type of MP, aquifer type, and Quaternary deposit type. Logistic regression revealed that springs, regionally important aquifer types, aquifers with a karstic flow regime, and alkaline Quaternary deposits in existence above karst aquifers in a MP’s ZOC were more likely to have a pesticide detection in groundwater. Multiple regression from this exploratory work showed some mutual dependency between soil association, aquifer type, and the Geological Survey of Ireland groundwater vulnerability map. The combination of national monitoring data and physical attribute datasets can be used to explore key areas where groundwater is more vulnerable to pesticide contamination.  相似文献   

12.
This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km2 encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam–loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.  相似文献   

13.
Hydrostratigraphy and hydrogeology of the Maira vicinity is important for the characterization of aquifer system and developing numerical groundwater flow models to predict the future availability of the water resource. Conventionally, the aquifer parameters are obtained by the analysis of pumping tests data which provide limited spatial information and turn out to be costly and time consuming. Vertical electrical soundings and pump testing of boreholes were conducted to delineate the aquifer system at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate the hydraulic conductivity of the aquifer system by establishing a relationship between the pumping test results and vertical electrical soundings by using regression technique. The relationship is applied to the area along the resistivity profiles where boreholes are not drilled. Our findings show a good match between pumped hydraulic conductivity and estimated hydraulic conductivity. In case of sparse borehole data, regression technique is useful in estimating hydraulic properties for aquifers with varying lithology.  相似文献   

14.
Pollution vulnerability of theOwerri regional water supply aquifer wasevaluated as a basis for developing appropriateprotection strategy for the groundwaterresource. The assessment was accomplished usingLegrand, GOD, Siga and DRASTIC models.Techniques of the models generally involvedparameters rating and point count systems, whichare based on the evaluation of various parameterin relation to their capacity for enhancing orattenuating contaminants in the groundwatersystem. Field and laboratory evaluations of theparameters indicate that the Owerri areagenerally occupies a nearly, flat topographywith a relatively high groundwater recharge. Thearea is underlain by predominantly sandyfacies in the Northern area which grades intogravelly sequences towards the southwest. TheSoutheastern area is distinguished by thickclayey facies that thin westwards towards theOwerri metropolis. Effective hydraulicconductivity (Kz) in the downward directionranges from 1.44 × 10-3 to 5.6 × 10-9 m s-1; with the upper limits reflecting coarsesands and gravelly units. The amount of clay andclay-size particles in the sandy and gravellyunits is negligible, suggesting that thesorptive capacity of the units is low. Depth towater table decreases southwards while hydraulichead gradients vary between 0.09 and 0.22.Groundwater occurs in unconfined conditions inmost places except in the southeastern zonewhere it is semi-confined due to the presence ofa clayey unit. The groundwater vulnerabilitymap developed on the basis of the models andseveral other thematic maps shows that theOwerri metropolis and the southwest area ofOwerri have high vulnerability, indicatinggroundwater pollution. The existing wastedisposal sites in these sub-areas should beabandoned and rehabilitated to forstall furtherpollution of the groundwater system. Areas tothe North and Southeast of Owerri have moderateand low vulnerabilities, respectively,indicating the relatively lower sensitivity ofthe groundwater system in the sub-areas tocontamination. The lower sensitivity couldfurther be matched with properly engineeredsanitary landfills in the event of choice ofsites, as an additional protective strategy forthe groundwater system.  相似文献   

15.
乌鲁木齐河流域浅层地下水防污性能评价   总被引:2,自引:0,他引:2  
地下水防污性能的评价是确定地下水资源保护措施是否可行的关键。本文根据乌鲁木齐河流域浅层地下水水文地质状况,采用DRASTIC模型,选取包气带岩性、厚度与结构、地形作为评价因子,在乌鲁木齐河流域地下水污染现状评价的基础上,用模糊综合评判法评价了地下水防污性能,从而为乌鲁木齐河流域地下水污染防治提供了依据。  相似文献   

16.
The Chi-Jia-Wan Stream watershed, located in the area of the upstream Da-Chia River in central Taiwan, is famous for slopeland agriculture and the land-locked salmon. Improper agricultural activities have caused apparent ecosystem vulnerability and sensitivity. In this study, a system that combined three watershed-based environmental indicators with multiple-criteria decision-making techniques, the Analytical Hierarchy Process, and the Preference Ranking Organization METHod for Enrichment Evaluations was developed to assess eco-environmental vulnerability. The composite evaluation index system was set up including sediment, runoff, and nutrient factors. Supported by geographic information system and K-means clustering and taking the subwatershed as the evaluation unit, the vulnerability is classified into four levels: potential, low, moderate, and high. The evaluated results show that 8.82% of subwatersheds (six subwatersheds) are in the moderately and highly vulnerable zones. These subwatersheds represent vertical-belt distribution, mainly concentrated in the right side of the studied area and near the riparian zone along the Chi-Jia-Wan Stream. The exploited farmland in the moderately and highly vulnerable zones is about 142.21 ha, occupying 75.38% of the total farmland in the studied watershed. These seriously vulnerable zones that have caused degradation in the quality of the eco-environment should be treated with more best management practices for eco-environmental rehabilitation. Additionally, the proposed model can effectively evaluate the eco-environmental vulnerability grade for reference in policy planning and ecological restoration in this area.  相似文献   

17.
The movement and degradation of pesticide residues in soils and groundwater are complex processes affected by soil physical, (bio)chemical, and hydrogeological properties, climatic conditions, and agricultural practices. This work presents a physically-based analytical model suitable for long-term predictions of pesticide concentrations in groundwater. The primary interest is to investigate the impact of soil environment, related physical and (bio)chemical processes, especially, volatilization, crop uptake, and agricultural practices on long-term vulnerability of groundwater to contamination by pesticides. The soil is separated into root and intermediate vadose zones, each with uniform properties. Transport in each soil zone is modeled on the basis of complete mixing, by spatial averaging the related point multiphase-transport partial differential equation (i.e., linear-reservoir models). Transport in the aquifer, however, is modeled by a two-dimensional advection-dispersion transport equation, considering adsorption and first-order decay rate. Vaporization in the soil is accounted for by assuming liquid-vapor phase partitioning using Henry's law, and vapor flux (volatilization) from the soil surface is modeled by diffusion through an air boundary layer. Sorption of liquid-phase solutes by crops is described by a linear relationship which is valid for first-order (passive) crop uptake. The model is applied to five pesticides (atrazine, bromacil, chlordane, heptachlor, and lindane), and the potential for pesticide contamination of groundwater is investigated for sandy and clayey soils. Simulation results show that groundwater contamination can be substantially reduced for clayey soil environments, where bio(chemical) degradation and volatilization are most efficient as natural loss pathways for the pesticides. Also, uptake by cross can be a significant mechanism for attenuating exposure levels in ground-water especially in a sandy soil environment, and for relatively persisting pesticides. Further, simulations indicate that changing agricultural practices can have a profound effect on vulnerability of groundwater to mobile and relatively persisting pesticides.  相似文献   

18.
北京市地下水污染源荷载影响评价   总被引:1,自引:0,他引:1  
在阐述地下水污染源荷载影响基本概念的基础上,介绍了污染源荷载影响评价的3大要素:污染荷载等级、含水层敏感性及地下水价值,说明了评价体系、指标和方法及过程。根据主要污染源荷载分析,结合地下水环境现状,对北京市进行了分区,提出污染源管理措施。  相似文献   

19.
The study presents a new methodology to quantify spatiotemporal dynamics of climate change vulnerability at a regional scale adopting a new conceptual model of vulnerability as a function of climate change impacts, ecological stability, and socioeconomic stability. Spatiotemporal trends of equally weighted proxy variables for the three vulnerability components were generated to develop a composite climate change vulnerability index (CCVI) for a Mediterranean region of Turkey combining Landsat time series data, digital elevation model (DEM)-derived data, ordinary kriging, and geographical information system. Climate change impact was based on spatiotemporal trends of August land surface temperature (LST) between 1987 and 2016. Ecological stability was based on DEM, slope, aspect, and spatiotemporal trends of normalized difference vegetation index (NDVI), while socioeconomic stability was quantified as a function of spatiotemporal trends of land cover, population density, per capita gross domestic product, and illiteracy. The zones ranked on the five classes of no-to-extreme vulnerability were identified where highly and moderately vulnerable lands covered 0.02% (12 km2) and 11.8% (6374 km2) of the study region, respectively, mostly occurring in the interior central part. The adoption of this composite CCVI approach is expected to lead to spatiotemporally dynamic policy recommendations towards sustainability and tailor preventive and mitigative measures to locally specific characteristics of coupled ecological–socioeconomic systems.  相似文献   

20.
Rural coastal aquifers are undergoing rapid changes due to increasing population, high water demand with expanding agricultural and domestic uses, and seawater intrusion due to unmanaged water pumping. The combined impact of these activities is the deterioration of groundwater quality, public health concerns, and unsustainable water demands. The Kalpitiya peninsula located northwest of Sri Lanka is one area undergoing such changes. This land area is limited and surrounded almost completely by sea and lagoon. This study consists of groundwater sampling and analysis, and vulnerability assessment using the DRASTIC method. The results reveal that the peninsula is experiencing multiple threats due to population growth, seawater intrusion, land use exploitation for intensive agriculture, groundwater vulnerability from agricultural and domestic uses, and potential public health impacts. Results show that nitrate is a prevalent and serious contaminant occurring in large concentrations (up to 128 mg/l NO3?CN), while salinity from seawater intrusion produces high chloride content (up to 471 mg/l), affecting freshwater sources. High nitrate levels may have already affected public health based on limited sampling for methemoglobin. The two main sources of nitrogen loadings in the area are fertilizer and human excreta. The major source of nitrogen results from the use of fertilizers and poor management of intense agricultural systems where a maximum application rate of up to 11.21 metric tons N/km2 per season is typical. These findings suggest that management of coastal aquifers requires an integrated approach to address both the prevalence of agriculture as an economic livelihood, and increasing population growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号