首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Bisphenol A (BPA) is one of a number of potential endocrine disruptors which may affect normal hormonal function. In this study, human UDP-glucuronosyltransferase (UGT) isoforms involved in BPA glucuronidation were studied by kinetic analyses using human liver microsomes and recombinant human UGTs expressed in insect cells (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17). BPA glucuronidation was catalyzed by UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7 and UGT2B15 as well as by human liver microsomes. Among these UGTs, UGT2B15 showed the highest activity of BPA glucuronidation at low- (1.0 microM) and high- (20 microM) substrate concentrations. Kinetic analyses of BPA glucuronidation were performed by constructing Michaelis-Menten and Eadie-Hofstee plots. The kinetic profile of BPA glucuronidation by pooled human liver microsomes and UGT2B15 was monophasic, the K(m) and V(max) values were 6.39 microM and 4250 pmol min(-1)mg(-1)protein for pooled human liver microsomes, and 8.68 microM and 873 pmol min(-1)mg(-1)protein for UGT2B15, respectively. The K(m) values for BPA glucuronidation by pooled human liver microsomes and UGT2B15 were similar. These findings demonstrate that BPA is mainly glucuronidated by UGT2B15 in human liver microsomes, and suggest that this UGT isoform plays important roles in the detoxification and elimination of BPA.  相似文献   

2.
3.
Bisphenol A (BPA) has been found in plastic food containers, paper currencies and toys. BPA has been reported for various adverse health concerns including reproduction, development and carcinogenesis. These potential health implications have led to increasing use of alternative bisphenols such as bisphenol F and bisphenol S among many. However, little is known about the toxicity of alternative bisphenols and most of the toxicological information is limited to endocrine disrupting potentials. In this study, we evaluated cytotoxicity and the genotoxic potentials of several bisphenol compounds, and identified the mechanism of genotoxicity using a panel of mutant chicken DT40 cell lines deficient in DNA repair pathways. Several bisphenols including bisphenol AP, bisphenol M, or bisphenol P exerted genotoxic potentials that are greater than that of BPA. Generally RAD54−/− mutant cells were the most sensitive to all bisphenols except for bisphenol F, suggesting the induction of DNA double-strand breaks that could be rescued by homologous recombination. Genotoxic potential of bisphenols was confirmed by chromosomal aberration assay and γ-H2AX foci forming assay between wild-type and RAD54−/− mutant. Among the tested bisphenols, BPP at 12.5 μM showed the greatest genotoxic potency, inducing chromosomal aberration and γ-H2AX foci in RAD54−/− mutant by 2.6 and 4.8 folds greater than those in wild-type, respectively. Our results clearly show several alternative bisphenols can cause genotoxicity that could be rescued by homologous recombination pathway, and some bisphenols induced even greater genotoxic potentials than that of BPA.  相似文献   

4.
Although the effect of volatile organic compounds (VOCs) on the oxidation of dissolved sulfur dioxide by oxygen has been the subject of many investigations, this is the first study which examines the effect of a large number of precisely 16 hydroxy compounds. The kinetics both in the absence and the presence of VOCs was defined by rate laws (A and B): A $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_o={k}_o\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ B $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_i={k}_i\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ where R o and k o are the initial rate and first-order rate constant, respectively, in the absence of VOCs, R i , and k i are the initial rate and the first-order rate constant, respectively, in the presence of VOCs, and [S(IV)] is the concentration of dissolved sulfur dioxide, sulfur(IV). The nature of the dependence of k i on the concentration of inhibitor, [Inh], was defined by Eq. (C). C $$ {k}_i={k}_0/\left(1+B\left[\mathrm{Inh}\right]\right) $$ where B is an empirical inhibition parameter. The values of B have been determined from the plots of 1/k i versus [Inh]. Among aliphatic and aromatic hydroxy compounds studied, t-butyl alcohol and pinacol were without any inhibition effect due to the absence of secondary or tertiary hydrogen. The values of inhibition parameter, B, were related to k inh , the rate constant for the reaction of SO4 ? radical with the inhibitor, by Eq. (D). D $$ B=\left(9\pm 2\right)\times 1{0}^{-4}\times {k}_{inh} $$ Equation (D) may be used to calculate the values of either of B or k inh provided that the other is known. The extent of inhibition depends on the value of the composite term, B[Inh]. However, in accordance with Eq. (C), the extent of inhibition would be sizeable and measurable when B[Inh]?>?0.1 and oxidation of S(IV) would be almost completely stopped when B[Inh]?≥?10. B[Inh] value can be used as a guide whether the reaction step: SO4 ??+?organics? \( \overset{k_{inh}}{\to } \) ?SO4 2??+?non-chain products: should be included in the multiphase models or not.  相似文献   

5.
This study sampled six times of river water, sediment, and tilapia (Oreochromis niloticus) in the Dan-Shui River, Taipei, Taiwan; 10 feminizing compounds were analyzed using ultra-performance liquid chromatography-tandem mass spectrometry. Bisphenol A (508?±?634 ng/L, geometric mean (GM) 303 ng/L) and nonylphenol (491?±?570 ng/L, GM 328 ng/L) were the most abundant among analytes in the river water. Nonylphenol (770?±?602 ng/g wet weight, GM 617 ng/g wet weight) was also the highest in sediment. Fish may uptake nonylphenol and nonylphenol ethoxylates from river water and sediment because there were significant correlations between the concentrations in these matrixes and those in fish tissues (r s ranged from 0.21 to 0.49, p?相似文献   

6.
Lai Y  Lu M  Lin S  Cai Z 《Chemosphere》2012,86(7):727-734
Polybrominated diphenyl ethers (PBDEs) can be metabolically converted to their hydroxylated metabolites (OH-PBDEs). The estrogenic effects of PBDEs may be mediated by OH-PBDEs, but the mechanisms of which are still not understood. This study investigated the glucuronidation of 11 OH-PBDEs and their potential in modulating UDP-glucuronosyltransferases (UGTs) activity of 17β-estradiol (E2) in rat liver microsomes. The number of bromine atoms at phenolic ring was observed as the most influential factor of OH-PBDEs glucuronidation. 2′-OH-BDE-28 having one bromine atom at phenolic ring showed the fastest metabolic rates with t1/2 value of 3.86 min, while 6-OH-BDE-137 having four bromine atoms at phenolic ring was the poorest substrate with t1/2 value over 60 min. Regarding to the modulation of E2-UGTs activity, the phenolic hydroxyl group in OH-PBDEs played an essential role. Depending on the substitution patterns of bromine and hydroxyl group, OH-PBDEs inhibited or stimulated E2-UGTs activity. Ten of OH-PBDEs inhibited both 3-glucuronidation and 17-glucuronidation of E2 with IC50 values varying from 3.80 to 129.38 μM, while 3′-OH-BDE-100 exhibited stimulating effects on 3-glucuronidation with EC50 value of 35.95 μM. Kinetic analysis suggested noncompetitive inhibition mode of E2 glucuronidation by 3′-OH-BDE-7, 6-OH-BDE-47 and 2′-OH-BDE-68 with Ki values varying from 11.95 to 67.22 μM. This study demonstrated OH-PBDEs exhibited large interindividual differences in glucuronidation and modulation of E2-UGTs activity. By inhibiting the formation of E2 glucuronidation, OH-PBDEs may increase E2 bioavailability in target tissue, thereby exerting an indirect estrogenic effect.  相似文献   

7.
Bisphenol A is an endocrine disrupting compound, which is ubiquitous in the environment due to its wide use in plastic and resin production. Seven day old cultures of the litter-decomposing fungus Stropharia coronilla removed the estrogenic activity of bisphenol A (BPA) rapidly and enduringly. Treatment of BPA with purified neutral manganese peroxidase (MnP) from this fungus also resulted in 100% reduction of estrogenic activity, as analyzed using a bioluminescent yeast assay, and in the formation of polymeric compounds. In cultures of Stropharia rugosoannulata, estrogenic activity also quickly disappeared but temporarily re-emerged in the further course of cultivation. LC-MS analysis of the extracted estrogenic culture liquid revealed [M−H] ions with m/z values of 219 and 235. We hypothesize that these compounds are ring fission products of BPA, which still exhibit one intact hydroxyphenyl group to interact with estrogen receptors displayed by the yeast.  相似文献   

8.
GOAL, SCOPE, AND BACKGROUND: The xenoestrogens bisphenol A, 4-tert-octylphenol, and the technical isomer mixture of 4-nonylphenol (tech. 4-nonylphenol) belong to the group of chemicals which are called endocrine disrupters due to their property of causing hormonal dysfunctions in the endocrine system of organisms at very low concentrations. Bisphenol A, 4-tert-octylphenol, and the tech. 4-nonylphenol (mixture of isomers) were determined in water samples collected from the influent and effluent of two German wastewater treatment plants (WWTP) during a long-time sampling period from February 2003 till August 2005 to assess their occurrence and temporal variations in WWTPs. METHODS: The compounds were extracted and concentrated from water by solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). RESULTS: The influent concentrations were as follows: Bisphenol A < limit of detection of the method (< ldm)--12,205 ng L(-1), tech. 4-nonylphenol < ldm--10,186 ng L(-1), and 4-tert-octylphenol 39-1,495 ng L(-1). The measured effluent concentrations were lower with values in the range of < ldm--7,625 ng L(-1) for bisphenol A, < ldm--14,444 ng L(-1) for tech. 4-nonylphenol, and < ldm--392 ng L(-1) for 4-tert-octylphenol. All target compounds were largely eliminated during the wastewater treatment process. The elimination efficiency varied between 73% and 93%. DISCUSSION: All analytes show highly fluctuating influent concentrations with very high peak concentrations at particular sampling times. The variation of effluent concentrations is by far lower than the variation of influent concentrations. For tech. 4-nonylphenol, a significant temporal concentration variation has been detected with very high concentrations up to the microgram-per-liter level in the time from February 2003 till July 2003 and clearly decreasing concentrations in the time from June 2004 till August 2005. This corresponds well with the implementation of Directive 2003/53/EC (nonylphenol and nonylphenol ethoxylates in the European Union "may not be placed on the marked or used as a substance or constituent of preparations in concentrations equal or higher than 0.1% by mass") from January 2005 on. Bisphenol A is present in the effluent samples in a wide range of concentrations from below the detection limit to high concentrations up to the microgram-per-liter level. For 4-tert-octylphenol, no particular trend of concentration development has been observed. CONCLUSIONS: Combined SPE and GC-MS proved to be an efficient method to identify and quantify polar organic compounds in environmental samples. With respect to the concentrations measured in the present study, bisphenol A sometimes is the prominent compound in influent samples. Neither bisphenol A nor 4-tert-octylphenol or tech. 4-nonylphenol show seasonal variations. However, there was a significant general trend of decreasing concentrations of tech. 4-nonylphenol in influent and effluent samples from both WWTPs which probably reflects the implementing Directive 2003/53/EC. RECOMMENDATIONS AND PERSPECTIVES: Further research is needed to investigate whether the observed decrease of tech. 4-nonylphenol concentrations in German WWTPs since June 2004 will continue further on. The reason for the high effluent concentrations of bisphenol A in only a few samples has to be clarified in further research. The results from this study provide insight into the concentration development of the xenoestrogens bisphenol A, tech. 4-nonylphenol, and 4-tert-octylphenol in WWTPs in the time span between 2003 and 2005.  相似文献   

9.
The influence of molybdenum oxide nanoparticles (MoO3) on the growth and survival of Eisenia fetida was established. The activity of antioxidant enzymes and changes in concentration of molybdenum in the body of E. fetida were determined. The degree of bacterial bioluminescence inhibition in extracts of substrates and worm was studied using luminescent strain Escherichia coli K12 TG1. The enzymatic activity of substrates before and after exposure with nanoparticles and worms was assessed. Nanoparticles have concentrations of 10, 40, and 500 mg/kg of dry matter, and substrata are made of artificial soil (substrate A) and microcrystalline cellulose (substrate B). Spherical nanoparticles MoO3, yellow in color, with size 92?±?0.3 nm, Z-potential 42?±?0.52 mV, molybdenum content 99.8 mass/%, and specific area 12 m2/g were used in the study. A significant decrease by 23.3 % in weight was registered (for MoO3 NPs at 500 mg/kg) on substrate A (p?≤?0.05). On substrate B, the maximum decrease in weight by 20.5, 33.3, and 16.9 % (p?≤?0.05) was registered at a dose of 10, 40, and 500 mg/kg, respectively; mortality was from 6.6 to 73 %. After the assessment of bacterial bioluminescence inhibition in substrates A and B (extracts) and before worms were put, the toxicity of substrates was established at doses of 40 and 500 mg/kg, expressed in inhibitory concentration (IC) 30 and IC 50 values. Comparatively, on days 7 and 14, after exposure in the presence of E. fetida, no inhibition of bioluminescence was registered in extracts of substrates A and B, indicating the reduction in toxicity of substrates. The initial content of molybdenum in E. fetida was 0.9?±?0.018 mg/kg of dry matter. The degree of molybdenum accumulation in worm tissue was dependent on the dose and substrate quality. In particular, 2–7 mg/kg of molybdenum accumulated from substrate A, while up to 15 kg/kg of molybdenum accumulated from substrate B (day 7). Molybdenum concentration decreased by 64.8 and 57.4 % at doses 40 and 500 mg/kg, respectively, on day 14. The reaction of antioxidant enzymes was shown in an insignificant increase of glutathione reductase (GSR) and catalase (CAT) at concentrations of 10 and 40 mg/kg in substrate A, followed by the subsequent reduction of their activity at the dose of 500 mg/kg MoO3. The activity of GSR in substrate B against the presence of MoO3 nanoparticles decreased, with significant difference of 33.5 % (p?≤?0.05) at the dose of 500 mg/kg compared with untreated soil. In experiments with substrate A, an increase of catalase activity was registered for the control sample. The presence of MoO3 nanoparticles at the concentration of 10 mg/kg in the environment promoted enzymatic activity on days 7 and 14, respectively. A further increase of nanoparticle concentration resulted in the decrease of catalase activity with a minimum value at the concentration of MoO3 of 500 mg/kg. In the experiment with substrate B at the concentration of MoO3 nanoparticles of 40 mg/kg, enzymatic activity increases on day 7 of exposure. However, the stimulating effect of nanoparticles stops by day 14 of the experiment and further catalase activity is dose dependent with the smallest value in the experiment with MoO3 having the concentration of 500 mg/kg.  相似文献   

10.
11.
12.
The goal of this work was to study the ability of 18 pesticides to inhibit selective model activities for all major xenobiotic-metabolizing enzymes, namely CYP1A1/2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4. Generally organophosphorus insecticides were the most potent and extensive inhibitors, especially towards CYP1A1/2 (IC50 values of chlorpyrifos, fenitrothion and profenofos ~3 μ M), CYP2B6 (IC50 values of chlorpyrifos and fenitrothion 2.5 μ M), CYP2C8 (fenitrothion 4.3 μ M), CYP2C9 (fenitrothion and malathion 4.8 and 2.5 μ M, respectively), CYP2D6 (chlorpyrifos and phenthoate ~ 3 μ M) and CYP3A4 (chlorpyrifos, fenitrothion and phenthoate 3–4 μ M). Otherwise there were quite considerable differences in potency and extent of inhibition between different organophosphates. Pyrethroids were in general very weak or inactive. Deltamethrin and fenvalerate were potent inhibitors of CYP2D6 (IC50 values of ~ 3 μ M) while lambda-cyhalothrin potently inhibited both CYP2D6 and CYP3A4-mediated activities (IC50's about 3–4 μ M). Some pesticides caused relatively potent inhibitions sporadically (carbendazim, CYP2D6, IC50 = 12 μ M; atrazine, CYP3A4, IC50 = 2.8 μ M; glyphosate, CYP2C9, IC50 = 3.7 μ M; hexaflumuron, IC50 = 6.0 μ M). With the exceptions of alpha-cypermethrin, cypermethrin, isoproturon, carbaryl and abamectin, most pesticides inhibited relatively potently at least one CYP-selective activity, which may have relevance for potential interactions in occupational exposures and for further studies on the CYP-associated metabolism of respective pesticides.  相似文献   

13.
The gas-phase photocatalytic oxidation (PCO) of pentane, i-pentane, hexane, i-hexane and heptane over illuminated titanium at ambient temperatures was studied in a continuous stirring-tank reactor and for different values of VOC feed concentrations and relative humidity levels. Conversions achieved were over 90% for residence times from 50 to 85 s and the only products formed were CO2 and H2O, while no catalyst deactivation was observed. The obtained results indicate that the molecular and stereochemical structures of the compounds play an important role in the reaction, as the rate was increasing with higher molecular weight, and the presence of a tertiary carbon atom enhanced the reactivity. It was also observed that the increase of the carbon chain by a methyl group had the same influence in the reaction rate in the case of both pentane and i-pentane, while the ratio of the rates for the linear and branched structure was the same for both C5 and C6 isomers. The presence of water in the system had an inhibitory effect in all cases. The PCO kinetics was well fit by a Langmuir–Hinshelwood model, modified so as to take into consideration the influence of water vapour. The rate constants ranged from 1.87 × 10?7 mol m?2 s?1 for pentane to 3.03 × 10?7 mol m?2 s?1 for heptane, and the VOC adsorption constants from 1.14 104 to 2.83 104 m3 mol?1, while the water adsorption constant was 11.2 m3 mol?1.  相似文献   

14.
We investigated the effect of N deposition (Ndep) on intrinsic water-use efficiency (WUEi), the ratio of photosynthesis (A) to stomatal conductance (gs), for two Quercus cerris stands at different distances to an oil refinery in Southern Italy. We used δ13C in tree rings for assessing changes in WUEi; while the influence of climate and NOx emission was explored through δ18O and δ15N, respectively. Differences in WUEi between the two sites were significant, with trees exposed to different degrees of NOx emissions showing an abrupt increase with the onset of pollution. Assuming similar gs at the two sites, as inferred through δ18O, the higher N availability at the polluted site caused the shift of the A/gs ratio in favour of A. Overall, our result suggests that an increase of Ndep may enhance tree WUE under a scenario of reduction of precipitation predicted for Mediterranean area.  相似文献   

15.
Tang T  Fan H  Ai S  Han R  Qiu Y 《Chemosphere》2011,83(3):255-264
Catalytic removal of bisphenol A from aqueous solution with hemoglobin immobilized on amino-modified magnetic nanoparticles as an enzyme catalyst was reported. The amino-modified magnetite nanoparticles were firstly prepared by the coprecipitation of Fe2+ and Fe3+ with NH3·H2O and then modified by 3-aminopropyltriethoxysilane. The immobilization process was optimized by examining enzyme concentration, glutaraldehyde concentration, cross-link time, and immobilization time. The optimum conditions for the removal of bisphenol A with immobilized hemoglobin were also investigated. Under the optimality conditions, the removal efficiency of bisphenol A was about 80.3%. The immobilization had a beneficial effect on the stability of hemoglobin and conversions of bisphenol A. According to the proposed breakdown pathway and the intermediates, the enzyme-catalytic removal of bisphenol A by the immobilized hemoglobin is considered to be an effective method.  相似文献   

16.
Gan HM  Shahir S  Ibrahim Z  Yahya A 《Chemosphere》2011,82(4):507-513
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μmax, Ks and Ki were determined to be 0.13 h−1, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.  相似文献   

17.
Poplar shoots were exposed for 3–4 weeks to filtered air, ambient (maximum values 50–60 nl -1) or two times ambient O3-concentrations under controlled environmental conditions in fumigation chambers. A sensitive (Populus nigra ‘Brandaris’) and a tolerant (P. euramericana ‘Robusta’) cultivar were used. At regular intervals the uptake of O3, transpiration and CO2 assimilation rate (Pn) of full-grown leaves were measured with leaf cuvettes. For unaffected leaves, the measured flux of O3 into the leaves appeared to be larger than can be calculated using the stomatal conductance for O3 (gs,o) estimated from the transpiration rates of the same leaves. Resistance analysis revealed that the difference was partly a result of a reaction with the external leaf surface. However, when the O3 flux into the leaf was corrected for this reaction, it was still larger than can be estimated using gs,o. As a consequence, negative residual or internal resistances (ri) for O3 transport into the leaves were assessed. It is postulated that O3 molecules moving into the leaf follow a shorter pathway than effluxing H2O-molecules. P. ‘Brandaris’ leaves showed a reduction in Pn after 12 days of exposure to ambient O3-concentrations, whereas for P. ‘Robusta’ a reduction in Pn was only observed at two times ambient concentrations. A simultaneous decline in the O3-flux was found in both cases. The decline occurred before a decrease in gs,o was observed suggesting that the O3 flux into the affected leaves was first hindered by internal factors. The measured flux of the affected leaves became smaller than the flux estimated using gs,o and, consequently, positive ri-values were estimated. The change in ri suggests that O3 molecules not only penetrated deeper into the leaf, but also were accumulating at a prolonged exposure. Our results indicate that ri may be a potentially important component of the overall resistance for O3-uptake, which may have important consequences for estimating O3 uptake from water vapour flux data.  相似文献   

18.
Sun K  Jin J  Gao B  Zhang Z  Wang Z  Pan Z  Xu D  Zhao Y 《Chemosphere》2012,88(5):577-583
The potential for negative effects caused by endocrine disrupting chemicals (EDCs) release into the environment is a prominent concern and numerous research projects have investigated possible environmental fate and toxicity. However, their sorption behavior by size fractions of soil and sediment has not been systematically represented. The sorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) by different size fractions of soil and sediment were investigated. Sorption isotherms of EE2, BPA, and Phen by size fractions of soil (SL) and sediment (ST) were well fitted to the Freundlich model. The positive correlation between EE2, BPA and Phen sorption capacity (log Kd) of size fractions and their organic carbon (OC) content suggests that OC of size fractions in SL and ST should regulate sorption, while the surface area (SA) of size fractions may not account for sorption of EE2, BPA and Phen. Each size fraction of ST had higher sorption capacity (Kd or KOC) of EE2 and BPA than that of SL due to their difference in the polarity of organic matter (OM) between terrestrial and aquatic sources. Sorption capacity logKd for size fractions of SL and ST did not follow the order: clay > silt > sand due to the difference in OM abundance and composition between the size fractions. Large particle fractions of ST contributed about 80% to the overall sorption for any EE2, BPA, and Phen. This study was significant to evaluate size fractions of soil and sediment as well as their associated OM affecting EE2 and BPA sorption processes.  相似文献   

19.
Landfill leachate has become a serious environmental concern because of the presence of many hazardous compounds which even at trace levels are a threat to human health and environment. Therefore, it is important to assess the toxicity of leachate generated and discharge it conforming to the safety standards. The present work examined the efficiency of an earlier reported Pseudomonas sp. strain ISTDF1 for detoxification of leachate collected from Okhla landfill site (New Delhi, India). GC-MS analysis performed after treatment showed the removal of compounds like alpha-limonene diepoxide, brominated dioxin-2-one, Bisphenol A, nitromusk, phthalate derivative, and nitrobenzene originally found in untreated leachate. ICP-AES analysis for heavy metals also showed reduction in concentrations of Zn, Cd, Cr, Fe, Ni, and Pb bringing them within the limit of safety discharge. Methyl tetrazolium (MTT) assay for cytotoxicity, alkaline comet assay for genotoxicity, and 7-ethoxyresorufin-O-deethylase (EROD) assay for dioxin-like behavior were carried out in human hepato-carcinoma cell line HepG2 to evaluate the toxic potential of treated and untreated leachates. The bacterium reduced toxicity as shown by 2.5-fold reduction of MTT EC50 value, 7-fold reduction in Olive Tail Moment, and 2.8-fold reduction in EROD induction after 240 h of bacterial treatment.  相似文献   

20.
Moderate resolution imaging spectroradiometer (MODIS) data are analyzed over the Indo-Gangetic plain (IGP) to study the effect of aerosol optical depth (AOD) on the water (Reff,w) and ice (Reff,i) cloud effective radius for the period 2001–2005. The temporal variation of Reff,w and Reff,i shows reverse trend as that of AOD for most of the time. The intensity of positive indirect effect (i.e. increase of Reff,w/i with decrease of AOD and vice versa) is the highest in winter (ΔReff,w/ΔAOD∼−9.67 μm and ΔReff,i/ΔAOD∼−12.15 μm), when the role of meteorology is the least. The positive indirect effect is significant in 43%, 37%, 68% and 54% of area for water clouds in winter, pre-monsoon, monsoon and post-monsoon seasons, respectively, whereas the corresponding values for ice clouds are 42%, 35%, 53% and 53% for the four seasons, respectively. On the contrast, Reff,i in some locations shows increment with the increase in AOD (negative indirect effect). The negative indirect effect is significant at 95% confidence level in 7%, 18%, 9% and 6% grids for winter, pre-monsoon, monsoon and post-monsoon seasons, respectively. The restricted spatial distribution of negative indirect effect in IGP shows that the cloud microphysical processes are very complex. Our analyses clearly identify the contrasting indirect effect, which requires further in situ investigations for better understanding of the aerosol–cloud interaction in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号