首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   3篇
  2016年   1篇
  2014年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

The automobile exhausts are one of the major sources of particulate matter in urban areas and these particles are known to influence the atmospheric chemistry in a variety of ways. Because of this, the oxidation of dissolved sulfur dioxide by oxygen was studied in aqueous suspensions of particulates, obtained by scraping the particles deposited inside a diesel truck exhaust pipe (DEP). A variation in pH showed the rate to increase with increase in pH from 5.22 to about ~6.3 and to decrease thereafter becoming very slow at pH?=?8.2. In acetate-buffered medium, the reaction rate was higher than the rate in unbuffered medium at the same pH. Further, the rate was found to be higher in suspension than in the leachate under otherwise identical conditions. And, the reaction rate in the blank reaction was the slowest. This appears to be due to catalysis by leached metal ions in leachate and due to catalysis by leached metal ions and particulate surface both in suspensions. The kinetics of dissolved SO2 oxidation in acetate-buffered medium as well as in unbuffered medium at pH?=?5.22 were defined by rate law: k obs ?=?k 0?+?k cat [DEP], where k obs and k 0 are observed rate constants in the presence and the absence of DEP and k cat is the rate constant for DEP-catalyzed pathway. At pH?=?8.2, the reaction rate was strongly inhibited by DEP in buffered and unbuffered media. Results suggest that the DEP would have an inhibiting effect in those areas where rainwater pH is 7 or more. These results at high pH are of particular significance to the Indian subcontinent, because of high rainwater pH. Conversely, it indicates the DEP to retard the oxidation of dissolved SO2 and control rainwater acidification.

  相似文献   
2.
In August 2012, eight rainwater samples were collected and analyzed for pH and metal ions, viz., iron, copper, and manganese. The pH was within the range 6.84–7.65. The rate of oxidation of dissolved sulfur dioxide was determined using these rainwater samples as reaction medium. Kinetics was defined by the rate law: ?d[S(IV)]/dt = R o = k o[S(IV)]], where k o is the first-order rate constant and R o is the rate of the reaction. The effect of two volatile organic compounds—ethanol and 2-butanol—was examined and found to inhibit the oxidation as defined by the rate law: k obs = k o/(1 + B [Inh]), where k obs is the first-order rate constant in the presence of the inhibitor, [Inh] is the concentration of the inhibitor, and B is the inhibitor parameter—an empirical constant. In the pH range of collected rainwater samples, the values of first-order rate constants ranged from 3.1?×?10?5 to 1.5?×?10?4 s?1 at 25 °C. The values of inhibition parameter were found to be (5.99?±?3.91?×?104) (ethanol) and (3.95?±?2.36)?×?104 (2-butanol) at 25 °C.  相似文献   
3.
Although the effect of volatile organic compounds (VOCs) on the oxidation of dissolved sulfur dioxide by oxygen has been the subject of many investigations, this is the first study which examines the effect of a large number of precisely 16 hydroxy compounds. The kinetics both in the absence and the presence of VOCs was defined by rate laws (A and B): A $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_o={k}_o\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ B $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_i={k}_i\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ where R o and k o are the initial rate and first-order rate constant, respectively, in the absence of VOCs, R i , and k i are the initial rate and the first-order rate constant, respectively, in the presence of VOCs, and [S(IV)] is the concentration of dissolved sulfur dioxide, sulfur(IV). The nature of the dependence of k i on the concentration of inhibitor, [Inh], was defined by Eq. (C). C $$ {k}_i={k}_0/\left(1+B\left[\mathrm{Inh}\right]\right) $$ where B is an empirical inhibition parameter. The values of B have been determined from the plots of 1/k i versus [Inh]. Among aliphatic and aromatic hydroxy compounds studied, t-butyl alcohol and pinacol were without any inhibition effect due to the absence of secondary or tertiary hydrogen. The values of inhibition parameter, B, were related to k inh , the rate constant for the reaction of SO4 ? radical with the inhibitor, by Eq. (D). D $$ B=\left(9\pm 2\right)\times 1{0}^{-4}\times {k}_{inh} $$ Equation (D) may be used to calculate the values of either of B or k inh provided that the other is known. The extent of inhibition depends on the value of the composite term, B[Inh]. However, in accordance with Eq. (C), the extent of inhibition would be sizeable and measurable when B[Inh]?>?0.1 and oxidation of S(IV) would be almost completely stopped when B[Inh]?≥?10. B[Inh] value can be used as a guide whether the reaction step: SO4 ??+?organics? \( \overset{k_{inh}}{\to } \) ?SO4 2??+?non-chain products: should be included in the multiphase models or not.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号