首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

2.
Temperature and salinity affected both length of larval development and mortality inNecora puber collected in the Ría de A Coruña during December 1984 and January 1985. Development time decreased considerably with increased temperature. This decrease was sharper when temperature increased from 15° to 20°C than when it increased from 20° to 25°C. At 35S, average development took 48, 32 and 28 d at 15°, 20° and 25°C, respectively. At the three salinities tested (25, 30 and 35), larval development was completed only at 15°C, at 20°C/30 and 35S, and at 25°C/35S. Development times at 15° and 20°C were highly significantly different at both 35 and 30S (P 0.01). However, there were no significant differences between development times at 20° and 25°C (P > 0.05). Within any one specific temperature series, no significant difference was observed between the salinity values tested (P > 0.05). The duration of each of the five zoeal stages was similar within each and the same temperature/salinity combination, whereas the duration of the megalop was twice as long as any of the zoeal stages. The combination of the lowest temperature (15°C) and the highest salinity (35) tested resulted in the greatest larval survival of 28%. Highest mortality occurred at 25°C, at which temperature development was completed only at 35S. A sharp drop in larval survival was observed in the transition period Zoea V — megalop in all combinations of temperature and salinity tested. Within the limits of tolerance to temperature and salinity, the former effected more pronounced differences in the duration of larval development, while salinity appeared to constitute a limiting factor for survival.  相似文献   

3.
The hemolymph of the blue crab Callinectes sapidus was hyperosmotic during 20-10-20 S and 30-10-30 S diurnal cycles. The hemolymph became isosmotic at 26 S and hyposmotic at 28 S in the 10-30-10 S diurnal cycle. Hemolymph Na+ was hyperionic to seawater throughout all cycles. Hemolymph Cl- was hyperionic below 24 S and either isionic or hypoionic from 24 to 30 S. Hemolymph K+ concentrations were hyperionic below 26 S and either isionic or hypoionic from 26 to 30 S. Hemolymph Mg++ values were hypoionic over the experimental salinity range (10 to 30). Hemolymph ninhydrin-positive substances (NPS) levels were directly related to ambient salinity.  相似文献   

4.
Mayzaud  P.  Dallot  S. 《Marine Biology》1973,22(4):307-312
The effects of sublethal concentrations of mercury in combination with stressful temperature-salinity regimes were considered for larval development of the fiddler crab Uca pugilator (Bosc.). Control organisms were compared to those treated with 1.8 ppb Hg for the following suboptimal regimes: 30°C, 30 S; 30°C, 20 S; 20°C, 30 S, and 20°C, 20 S. As physiological indicators of larval response, the survival rate, the O2 consumption rate, and phototactic response were measured, following either acute 24 h doses of Hg, or chronic rearing in Hg. All response parameters were modified in larvae maintained under the suboptimal conditions; mercury compounded the effects.Supported by Grant No. 18080 FYI from the Environmental Protection Agency.  相似文献   

5.
Mussels, Mytilus edulis L., were subjected to high temperatures, low salinities and dissolved zinc in order to investigate possible environmental hazards of a discharge of heated effluent near Newport on the Yarra River estuary, Victoria, Australia. Exposure to zinc at 0.8 mg l-1 for 14 d in otherwise favourable conditions significantly increased mortality resulting from subsequent exposure to temperatures between 29° to 31°C for 24 h without added zinc. Mussels collected from water of temporarily lowered salinity (8–16 S) showed significantly lower thermal resistance than controls collected from marine salinities (35 S). Mussels taken from a marine environment and exposed to 10 S died at a rate which increased with temperature. Mussels acclimated for 14 d to combinations of 10°, 16° and 22°C and 22 and 35 S, and subsequently exposed to increased zinc concentrations accumulated zinc to levels which were independent of temperature and salinity. The zinc was lethal more quickly at 22°C and 35 S than at the lower temperatures and salinities. The modes of toxic action of the salinity, zinc and temperature factors are discussed and it is argued that zinc which has been found accumulated in mussels near Newport could be reducing their resistance to raised temperatures and perhaps other stresses, probably as a result of effects on lysosomal functioning. The evidence suggests that the heated effluent will accelerate any toxic effects of zinc or low salinities which occur near Newport and so poses a hazard in winter as well as in summer.  相似文献   

6.
The combined effects of salinity and temperature on survival and growth of larvae of the mussel Mytilus edulis (L.) were studied. The effects of salinity and temperature are significantly related only as the limits of tolerance of either factor are approached. Survival of larvae at salinities from 15 to 40 is uniformly good (70% or better) at temperatures from 5° to 20°C, but is reduced drastically at 25 °C, particularly at high (40) and low (20) salinities. Larval growth is rapid at a temperature of 15 °C in salinities from 25 to 35, at 20 °C in salinities from 20 to 35. Optimum growth occurs at 20 °C in salinities from 25 to 30. Growth decreases both at 25° and 10 °C; the decline is most drastic at high (40) and low (20) salinities.Part of a study completed at the Bureau of Commercial Fisheries, Biological Laboratory, Milford, Connecticut, USA, while on a UNESCO Fellowship.  相似文献   

7.
Respiration rates of Thais haemastoma and Callinectes sapidus were determined as a function of salinity with a flow-through respirometer at 20°C. Respiration rates were measured at 10, 20 and 30 S for acclimated animals. The effects of 10-5-10, 20-10-20, 30-10-30 and 10-30-10 S semidiurnal cycles (12 h) of fluctuating salinity on the rate of respiration of the oyster drill were studied. During each cycle, salinity was changed from the acclimation salinity over a 4 h interval, held at that salinity for 2 h, returned to the acclimation salinity over 4 h and held at that salinity for 2 h. The effects of diurnal (24.8 h) salinity cycles on respiration in the oyster drill and blue crab were also studied. Salinity was changed from the acclimation salinity over a 10.4 h interval, held at that salinity for 2 h, then returned to the acclimation salinity over 10.4 h and held at that salinity for 2 h. The respiration rate of 30 S acclimated oyster drills (679 l O2 g dry weight–1 h–1) was significantly higher than for individuals acclimated to 10 S (534 l O2 g dry weight–1 h–1). Blue crab respiration was 170 l O2 g dry weight–1 h–1 at 30 S, and was significantly higher at 10 and 20 S than at 30 S. With the exception of the 20-10-20 S semidiurnal cycle, the respiration rate of oyster drills declined as salinity fluctuated in either direction from the acclimation salinity and increased as ambient salinity returned to the acclimation salinity. Semidiurnal cycles (12 h) of fluctuating salinity produced greater changes in the respiration rate of snails than analogous diurnal cycles (24.8 h). A 10-30-10 S pattern of fluctuation caused a greater percentage reduction in the steady state respiration rate of oyster drills than the 30-10-30 S pattern. The respiration rate of blue crabs varied inversely with fluctuating salinity. Relatively minor changes occurred in blue crab respiration rate with fluctuating salinity. Blue crab respiration rate characteristically dropped during the initial phase of declining salinity at a rate directly proportional to the rate of salinity decrease, perhaps representing a metabolic adjustment period by the blue crabs. The respiratory response of T. haemastoma to salinity is consistent with its incomplete volume regulation, while the response of C. sapidus is compatible with its ability to regulate extracellular fluid osmotic and ionic composition.  相似文献   

8.
Rhithropanopeus harrisii (Gould) is an introduced species in the estuary of the Mondego River (Portugal): it was first recorded from the Iberian Peninsula in 1989. The larval development of this population was studied under laboratory conditions at different temperatures and salinities, and showed a larval development pattern very similar to that reported for American estuarine populations of this species. Larval development was negatively correlated with temperature. Time to megalopa varied between 7 and 35 d; the first crab (C1) was reached after a maximum of 11 to 43 d. Larval development was optimum at 25°C and 15S. Larval survival was maximum at 10, 15 and 20S at all three temperatures studied (20, 25 and 30°C). The percentage of abnormal megalopae increased with increasing salinity to a maximum (100%) at 30S; incidence of abnormality was not affected by temperature.  相似文献   

9.
Tigriopus brevicornis (O. F. Müller) were collected in 1992 from rock pools close to U.M.B.S. Millport, Isle of Cumbrae, U.K. and acclimated to various combinations of salinity and temperature for at least 1 wk prior to laboratory experiments. Higher salinities of acclimation enhanced tolerance to high salinity stress, while tolerance of low salinities was hardly affected by acclimation salinity. Acclimation to low temperature (10°C) extended the survivable salinity range for T. brevicornis. High-salinity acclimation enhanced the survivable temperature range. Copepods acclimated to 60 survived significantly lower and higher temperatures than did 34-acclimated individuals. At high temperature, 75-acclimated female copepods had the highest median lethal temperature, 38.9°C. Females were significantly more resistant to high temperatures than males. The copepods were seen to have a very low median lethal temperature when frozen into solid ice for 2 h; 50% mortality occurred at-16.9°C in 10°C, 34-acclimated T. brevicornis. Salinity preference experiments demonstrated an ability to discriminate between salinities differing by as little as 3. Copepods acclimated to 34 chose salinities near their acclimation salinity; individuals acclimated to 5 favoured slightly higher salinities, while copepods acclimated to 60 chose rather lower salinities.  相似文献   

10.
Rainbow trout (Salmo gairdneri Richardson) which had been maintained for 120 days in salinities of fresh water, 7.5, 15.0 and 32.5 at 10°C were fasted for up to 48 days under these same environmental conditions. Live weight loss between Days 7 and 48 of starvation could be described by a straight line, as could the decrease in condition factor . Trout maintained in 32.5% S showed a significantly greater weight loss than those in salinities of 15.0 and below. Muscle water content increased slightly during fasting in fresh water, 7.5 and 15.0 S. In 32.5 S, however, muscle water fell significantly between Days 19 and 37. Liver water content also increased slightly during fasting, except in 32.5 S, where water content again decreased between Days 19 and 37. The volume of the gall bladder contents increased during fasting.  相似文献   

11.
N. M. Saks 《Marine Biology》1982,68(2):175-179
Three strains of Nitzschia ovalis Arnott grew at temperatures from 15°–36°C and at salinities from 5–40 S Optimum growth occurred at combinations of 25°, 27.5° and 30°C and 25, 30 and 35S. This estuarine benthic diatom tolerates wide salinity and temperature conditions while demonstrating resistance to ultraviolet irradiation at 350 nm.  相似文献   

12.
The coralline alga Phymatolithon calcareum was dredged from 13 m in the Kattegatt, Baltic Sea, in December, 1980, and its rate of calcification was measured by 45Ca++-uptake methods. Light-saturated calcification rates at 5°C ranged from 15.8 g CaCO3 g-1 dry wt h-1 for the basal parts of the plants to 38.7 g CaCO3 g-1 dry wt h-1 for the tips. These age gradients were not apparent when calcification rates were expressed on the basis of surface area. Experiments with salinity (10, 20, 30) and temperature (0°, 5°, 10°, 20°C) indicated that optimum conditions for calcification were at 30 S and at temperatures above 10°C. Salinity had a greater influence on calcification rate than did temperature, and there was a positive relationship between salinity and calcification rate at all temperatures. In 6 mo old cultures, salinity was again the important factor, with all plants remaining healthy at 30 except those at the highest temperature (20°C). These trends, and the low calcification rates at 10S (4.6 g CaCO3 g-1 dry wt h-1 at 5°C to 8.6 g CaCO3g-1 dry wt h-1 at 20°C) suggest that low salinity may be the explanation for the general absence of P. calcareum from the brackish waters of the Baltic Sea. Short-term experiments in which salinity was kept constant while Ca++ concentration was altered, and experiments in which salinity was varied and Ca++ concentration kept constant, suggest that it is the calcium ion concentration and not salinity per se which affects calcification rates.  相似文献   

13.
The effect of salinity on embryonic development ofSepia officinalis (cuttlefish) in the Delta Area (South Western part of The Netherlands) was investigated in 1988/1989, and compared with data concerning the distribution ofS. officinalis in the three main parts of this area: Oosterschelde, Westerschelde and Grevelingen. Embryos hatched in water collected at Yerseke (Oosterschelde), Vlissingen (Western part of the Westerschelde) and Bommenede (Grevelingen), i.e., at salinity values above 28.1, but not in water sampled at Hoedekenskerke and Hansweert (Middle and Eastern part of the Westerschelde; salinities below 22.0). Under laboratory conditions, using diluted Oosterschelde water, the highest hatching percentages ofS. officinalis were found at salinities above 29.8. Some embryos hatched at a salinity value of 26.5 but no hatching occurred at salinities below 23.9. In embryos exposed to salinity changes during late embryonic development, the developmental rate decreased at salinity values of 28.7 or less. Below 22.4 embryos with morphological malformations were found. It can be concluded that salinity is an important factor limiting the distribution ofS. officinalis in most parts of the Delta Area, with the exception of the Western part of the Westerschelde and the Grevelingen.Contribution no. 489 of the Library of the Delta Institute for Hydrobiological Research  相似文献   

14.
Routine oxygen uptake (QO2) by yolk-sac and firstfeeding larvae of herring (Clupea harengus L.) and plaice (Pleuronectes platessa L.) was studied after acute change of temperature (8°, 13°, 18°C) and salinity (5, 12.7, 32, 40). In both species, QO2 (l mg-1 dry wt h-1) of both larval stages increased with increasing temperature. Salinity effect on QO2 varied: for yolk-sac larvae of both species a lower QO2 was found at lower combined salinities (5 and 12.7); for feeding larvae a lower QO2 was observed at 12.7 for both species, possibly due to the relatively smaller size of larvae used at this salinity. For both species, oxygen uptake increased as larvae grew and weight regression coefficients were between 0.74 and 1.33. At 32 S, no difference was found in oxygen consumption between species as a function of temperature.Based on a dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science at the University of Stirling, Stirling, Scotland. The work was performed at the Dunstaffnage Marine Research Laboratory, Oban, Scotland  相似文献   

15.
Saccostrea echinata (Quoy and Gaimard) were exposed to 10 g 1-1 of either mercury, cadmium or lead at 30 °C, 36S; 30 °C, 20S; 20°C, 36S and 20°C, 20S for 30 d and were then transferred to clean seawater for a further 30 d to depurate. Specimens were removed at regular intervals during the exposure and depuration periods, dissected into gills, mantle, visceral mass and adductor, and analysed for the appropriate metal by atomic absorption spectroscopy. Mercury was concentrated more than the other metals in all tissues under all conditions. Cadmium uptake was greater than lead in all tissue in the high-temperature experiments, whereas both metals were concentrated to similar extents at low temperature. The gill tissue generally accumulated the greatest amount of all 3 metals, whilst the adductor concentrated the least amount. At both salinities, mercury and cadmium accumulation by all tissues was significantly greater at the higher temperature whereas lead uptake was only marginally increased. The accumulation rates of mercury at high temperature were significantly greater in all tissues at low compared with high salinity, whereas at low temperature, differences were not significant. Accumulation rates of cadmium and lead in the majority of tissues examined were significantly greater in lowsalinity water at both temperatures. In general, lead was lost the most rapidly from oyster tissues, followed by mercury and then cadmium. The residence times for mercury and cadmium differed significantly between tissues, with the gills showing the highest turnover rate. In contrast, residence times for lead were similar between tissues. Losses of all 3 metals from oyster tissues were not obviously influenced by temperature and only mercury losses differed significantly between salinities.  相似文献   

16.
Juvenile Callinectes sapidus Rathbun were collected from brackish and hypersaline coastal environments in August 1986 and July 1987, respectively. The brackish collection site was a salt-marsh near Grand Isle, Louisiana (USA), and the hypersaline site was in the barrier island system on the north end of the Laguna Madre near Corpus Christi, Texas (USA). On the dates of collection, salinities fluctuated daily between 20 and 30 S and between 30 and 45 S at the brackish and hypersaline collection sites, respectively. The high-salinity 21 d LC50 (50% mortality) was 56.0 for brackish-water individuals and 66.5 S for hypersaline individuals. The brackish-water individuals survived 0 S. The lowsalinity 21 d LC50 was 0.5 S for the hypersaline individuals. Respiration and excretion comprised a small portion of the energy budget and did not vary with salinity for individuals from brackish water. However, both respiration and excretion increased with decreasing salinity in individuals from the hypersaline environment. Respiration accounted for more energy than excretion. As energetic expenditure (due to respiration and excretion) was relatively small, scope for growth usually paralleled energy absorption. Scope for growth responses to salinity differed significantly between crabs from the two environments. Peaks in scope for growth for both the brackish-water and hypersaline individuals corresponded to salinities normally encountered by these crabs in their natural habitats. Individuals from the brackish-water population had maximal energy absorption and scope for growth at 10 and 25 S. Individuals from the hypersaline population displayed maximal energy absorption at 35 S and maximal scope for growth at 35 and 50 S.  相似文献   

17.
Adult silversides, Menidia menidia menidia (Linnaeus), were collected in early March, 1974 and maintained in 3 recirculating seawater tanks in the laboratory. Respective groups were fed Moore-Clark Fry Fine at 3, 7 and 10% of their body weight per day. The photoperiod (light intensity approximately 2000 lux) was increased in increments of 10 min/day from 12 h light to 14 h light. The water temperature was increased by 1C°/day from the ambient collection temperature, 14°C, to 22°C. Twenty-four days after beginning laboratory conditioning, fish in each tank were stripped. There was a significant increase (2, =0.05) in the number of ripe males at all three feeding levels, compared to an initial field-collected group that was checked at the beginning of the conditioning period. Females also showed significant increases in ripeness at the 7 and 10% but not at the 3% feeding level. The gonadal indices (gonad weight expressed as percentage of body weight) of both sexes were significantly greater than those measured for the initial field-collected group, but did not differ from those of adults collected from the field at the time laboratory conditioning was terminated. Techniques for maintaining eggs from field-ripened adults in the laboratory have been developed, and the effect of salinity on the percentage emergence of larvae determined. The highest emergence rate of larvae was 61% when eggs were maintained at 30 S. Emergence was 56% at 20 S and 47% at 10 S. The effect of delayed feeding on survival and growth of larvae was determined at 20 and 30 S and 25°C. Survival and growth was best for larvae fed Artemia sp. nauplii immediately after emergence at 30 S.Contribution No. 252, Gulf Breeze Environmental Research Laboratory.Associate Laboratory of the National Environmental Research Center, Corvallis, Oregon, USA.  相似文献   

18.
P. Natarajan 《Marine Biology》1989,101(3):347-354
Phasing of persistent circatidal rhythmicity to an artificial tidal cycle was assessed in the prawns Penaeus indicus Milne Edwards and P. monodon (Fabricius) collected from the Vellar estuary, South India, in the period between June and December 1984. Simulated 6 h cycles of 20 and 30 S, and 6 h cycles of 20° and 30°C induced a persistent tidal rhythmicity after 20 cycles. The imposed 6 h cycles of 25 and 30 S, and 25° and 30°C induced tidal rhythms after 30 cycles. In both cases, re-established tidal activity rhythms were evident for at least 48 h — higher activity occurring during the higher salinity and lower temperature phases of the simulated tidal cycles. Artificial tidal cycles of still water and running water synchronized the tidal rhythm after 20 cycles. Combined 30 S, 20°C, for 6 h and 20 S and 30°C for 6 h established a persistent tidal rhythm after 10 cycles, whereas wave action had no influence on tidal synchronization. The influence of possible interactions of tidal rhythms and in situ tidal variables on circatidal activity is discussed.  相似文献   

19.
Routine oxygen consumption of very young juveniles (0.1 g) of Penaeus indicus H. Milne Edwards was significantly influenced by ambient temperature and weight of the animal, but not by ambient salinity, when tested at salinities (7, 21, and 35) to which they had been long-term (over 10 days) acclimated. Standard oxygen consumption of young juvenile prawns (1 to 3 g), subjected to step-wise changes in ambient salinity, from sea water to low salinity waters (2 to 6), and measured after short-term (24 h) salinity acclimation at each step, was lowest at salinities where prawns such as those tested occur naturally (10 to 15). The metabolic rates do not appear to have a direct relation to the osmotic gradient, even when the influence of interfering activity is eliminated. It appears that factors other than osmotic gradient will have to be sought in order to explain the metabolic patterns of P. indicus in relation to salinity.  相似文献   

20.
Adult male Uca rapax, collected from the central coast of Venezuela in early 1994 were gradually acclimated to salinities ranging from 1.7 to 139S. The hemolymph osmolality (791±15 mOsmol in crabs from 26S) changed less than three-fold over the entire range of concentrations tested. The urine was isosmotic with the hemolymph in crabs exposed to dilutions <26S, and significantly hyperosmotic in those exposed to media >34.8S. The hemolymph levels of Na+, Cl, K+, Ca2+ and Mg2+ (320±13, 405±17, 7.8±0.7, 7.2±0.1 and 31±2.2 mmol l–1, respectively, in crabs acclimated to 26S) were maintained fairly constant over the range from 8.7 to 99S, decreasing by 15% in the more dilute media or increasing sharply to about twice those values in crabs from 139S. The excretory organs contributed to the osmoionic regulation of the hemolymph in crabs exposed to <3.5 or to >34.8S, by means of the partial reabsorption or excretion, respectively, of salts from or into the urine. The results described place U. rapax among the most powerful hypo/hyper-regulating crustaceans known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号