首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The Central Himalayan region is suffering from severe ecological problems as a consequence of deforestation and that threatens the subsistence population of the region. We analyze this problem and propose a plan for ecologically sustainable development for the region based on an analysis of the interrelationships of various ecosystems, particularly cropland and forest ecosystems, around which most human activities are concentrated. Each energy unit of agronomic yield leads to expenditure of about 12 energy units of forest/grazing land energy. Because with rapidly declining forest area, this form of agriculture is no longer sustainable and cannot be converted into a fossil fuel-based agriculture, we propose that agriculture in the mountain region has to be largely replaced with farm forests to revitalize the environment and to generate the basic needs of the subsistence economy of the hill population whose food grain needs can be met from the plains. We conclude by describing the advantages that are likely to accrue to the people for their long-term future. In terms of both energy and money, the value of resources collected from the forest to support agriculture in the present systems far exceeds the value of food grain that would be required to enable the proposed farm forest-based systems to function. At regional level, the proposed system would generate more energy than the existing systems, not only because the productivity of forest is about tenfold greater than that of cropland, but also because the proposed plan promotes recovery of various ecosystems.  相似文献   

2.
Induced by high population density, rapid but uneven economic growth, and historic resource exploitation, China’s upper Yangtze basin has witnessed remarkable changes in land use and cover, which have resulted in severe environmental consequences, such as flooding, soil erosion, and habitat loss. This article examines the causes of land use and land cover change (LUCC) along the Jinsha River, one primary section of the upper Yangtze, aiming to better understand the human impact on the dynamic LUCC process and to support necessary policy actions for more sustainable land use and environmental protection. Using a repeated cross-sectional dataset covering 31 counties over four time periods from 1975 to 2000, we develop a fractional logit model to empirically determine the effects of socioeconomic and institutional factors on changes for cropland, forestland, and grassland. It is shown that population expansion, food self-sufficiency, and better market access drove cropland expansion, while industrial development contributed significantly to the increase of forestland and the decrease of other land uses. Similarly, stable tenure had a positive effect on forest protection. Moreover, past land use decisions were less significantly influenced by distorted market signals. We believe that these and other findings carry important policy implications.  相似文献   

3.
The subsidence caused by coal mining in areas where cropland and coal resources overlap in the eastern plains of China with high ground water levels has caused large amounts of water to collect in cropland, significant damage to cropland, and a sharp contradiction between people and land distribution within this region. Systematic analysis and calculation were conducted on these areas by using GIS spatial overlay analysis technology, subsidence and occupied cropland estimation models, and crop yield reduction prediction model to reveal the overlapped characteristics and extent of farmland damage, as well as to evaluate the effects of farmland damage to grain yield, farmland landscape, agricultural population, and dynamical equilibrium of the total cultivated land. Results showed that the overlapped areas of cropland and coal resources on the eastern plains of China occupied an area covering 1.33 × 105 km2, which accounted for 31.93% of the total cropland area. In 2020, the accumulative total area of destroyed cropland reached 3.83 × 103 km2, thus reducing grain yield by 9.63 × 108 kg, and increasing the number of landless farmers to 1.91 × 106. Furthermore, the quality and production capacity of cultivated land decreased, farmland landscape patterns changed, land patterns and structures were adjusted, the dynamical equilibrium of the total cultivated land was difficult to guarantee, and social instability increased in coal mining subsidence areas. These findings provided a scientific basis for relevant government departments to enact countermeasures for the coordinative production of coal and grain.  相似文献   

4.
耕地健康关乎国家粮食安全。依据PSR理论模型构建耕地健康评价指标体系,利用湖南省岳阳市湘阴县农户调查数据,运用层次分析法、TOPSIS法和障碍度模型评价了该县耕地健康状况并诊断其障碍因子。结果表明:湘阴县耕地健康综合指数为0.488,耕地健康等级为中度亚健康;耕地健康压力指数、状态指数和响应指数依次分别为0.597、0.526和0.418;轮作休耕、种植绿肥、单位播种面积有机肥施用量、粮食单产、耕作层厚度、单位播种面积化肥施用量、灌溉保证率是制约湘阴县耕地健康的主要障碍因子。  相似文献   

5.
Land-cover change has significant influence on carbon storage and fluxes in terrestrial ecosystems. The southern United States is thought to be the largest carbon sink across the conterminous United States. However, the spatial and temporary variability of carbon storage and fluxes due to land-cover change in the southern United States remains unclear. In this study, we first reconstructed the annual data set of land-cover of the southern United States from 1860 to 2003 with a spatial resolution of 8 km. Then we used a spatially explicit process-based biogeochemical model (Terrestrial Ecosystem Model [TEM] 4.3) to simulate the effects of cropland expansion and forest regrowth on the carbon dynamics in this region. The pattern of land-cover change in the southern United States was primarily driven by the change of cropland, including cropland expansion and forest regrowth on abandoned cropland. The TEM simulation estimated that total carbon storage in the southern United States in 1860 was 36.8 Pg C, which likely was overestimated, including 10.8 Pg C in the southeast and 26 Pg C in the south-central. During 1860-2003, a total of 9.4 Pg C, including 6.5 Pg C of vegetation and 2.9 Pg C of soil C pool, was released to the atmosphere in the southern United States. The net carbon flux due to cropland expansion and forest regrowth on abandoned cropland was approximately zero in the entire southern region between 1980 and 2003. The temporal and spatial variability of regional net carbon exchange was influenced by land-cover pattern, especially the distribution of cropland. The land-use analysis in this study is incomplete and preliminary. Finally, the limitations, improvements, and future research needs of this study were discussed.  相似文献   

6.
7.
运用ArcGIS技术,结合江西省于都县耕地的数量与空间分布状况、坡度、人口等因素对该县退耕还林工作进行辅助决策分析,深入分析到乡镇以确定该县退耕还林区和退耕还林的实施措施,为于都县的退耕还林决策工作提供科学参考。  相似文献   

8.
ABSTRACT Irrigated land outproduces dryland agriculture, especially in the western United States. Many valuable crops could not be grown without irrigation. A paucity of yield data does not allow direct measurement of the contribution from irrigated crop agriculture, nor does it allow evaluation of the contributions from livestock which are dependent upon irrigated feed. Regression results indicate that 80 percent of Idaho farm income is associated with irrigation, and that 75 percent of the farm income in the 17 western states is associated with irrigation. For the United States as a whole, results indicate that 13.7 percent of the total cropland (irrigated land) produced 41.3 percent of all cash receipts from farming in 1978. If 14 percent of the land can produce 40 percent of the value of production, can 35 percent of our land produce all our food and fiber needs? Such an allegation has several implications in terms of the adequacy of our land and water resources. It also emphasizes the role of technology in future resource use and production.  相似文献   

9.
In the Laurentian Great Lakes Basin (GLB), corn acreage has been expanding since 2005 in response to high demand for corn as an ethanol feedstock. This study integrated remote sensing-derived products and the Soil and Water Assessment Tool (SWAT) within a geographic information system (GIS) modeling environment to assess the impacts of cropland change on sediment yield within four selected watersheds in the GLB. The SWAT models were calibrated during a 6 year period (2000–2005), and predicted stream flows were validated. The R 2 values were 0.76, 0.80, 0.72, and 0.81 for the St. Joseph River, the St. Mary River, the Peshtigo River, and the Cattaraugus Creek watersheds, respectively. The corresponding E (Nash and Sutcliffe model efficiency coefficient) values ranged from 0.24 to 0.79. The average annual sediment yields (tons/ha/year) ranged from 0.12 to 4.44 for the baseline (2000 to 2008) condition. Sediment yields were predicted to increase for possible future cropland change scenarios. The first scenario was to convert all “other” agricultural row crop types (i.e., sorghum) to corn fields and switch the current/baseline crop rotation into continuous corn. The average annual sediment yields increased 7–42 % for different watersheds. The second scenario was to further expand the corn planting to hay/pasture fields. The average annual sediment yields increased 33–127 % compared with baseline conditions.  相似文献   

10.
This paper examines the effects of growing land pressure on the distribution and quality of cropland allocations on customary tenured land (CTL) in Swaziland. Within the wider Sub‐Saharan context, the reform of indigenous tenure systems is now generally seen as a process of adaptation rather than replacement. The legal recognition of (existing and future) user rights is considered a practical way forward. This essentially rights‐based approach may divert attention from technical inadequacies indigenous systems may have, particularly under conditions of increasing land pressure. The case of CTL substantiates such shortcomings. CTL has seen a marked growth in population and land allocations since Independence. This had led to concerns on the land distribution efficiency in view of the improved agricultural production required to sustain the increasing number of rural households. By analysing historical changes in the number, size and quality of cropland allocations in selected rural communities, this paper demonstrates the occurrence of a high degree of inconsistency in cropland distribution at the community level, as well as inefficient land distribution at higher levels of scale. These shortcomings threaten the sustainability of the local agricultural production systems, and will need to be addressed in any meaningful reform process.  相似文献   

11.
A large number of mathematical models have been developed to support land resource allocation decisions and land management needs; however, few of them can address various uncertainties that exist in relation to many factors presented in such decisions (e.g., land resource availabilities, land demands, land-use patterns, and social demands, as well as ecological requirements). In this study, a multi-objective interval-stochastic land resource allocation model (MOISLAM) was developed for tackling uncertainty that presents as discrete intervals and/or probability distributions. The developed model improves upon the existing multi-objective programming and inexact optimization approaches. The MOISLAM not only considers economic factors, but also involves food security and eco-environmental constraints; it can, therefore, effectively reflect various interrelations among different aspects in a land resource management system. Moreover, the model can also help examine the reliability of satisfying (or the risk of violating) system constraints under uncertainty. In this study, the MOISLAM was applied to a real case of long-term urban land resource allocation planning in Suzhou, in the Yangtze River Delta of China. Interval solutions associated with different risk levels of constraint violation were obtained. The results are considered useful for generating a range of decision alternatives under various system conditions, and thus helping decision makers to identify a desirable land resource allocation strategy under uncertainty.  相似文献   

12.
Land degradation in the Ethiopian highlands is considered to be one of the major problems threatening agricultural development and food security in the country. However, knowledge about the forces driving the long-term dynamics in land resources use is limited. This research integrates biophysical information with socio-economic processes and policy changes to examine the dynamics of land resource use and farmers' livelihoods in the Beressa watershed for over 40 years during the second half of the 20th century. It was found that there have been substantial dynamics in land resource use in the area. The natural vegetation cover has been extensively cleared, although most of the cleared areas have since been replaced with plantations. Grazing land has expanded remarkably at the expense of cropland and bare land. However, the expansion of cropland was minimal over the 43-year period despite a quadrupling of the population density. Yields have not increased to compensate for the reduction in per capita cropland, and the soil quality appears to be not that good. Though the farmers perceived it otherwise, the long-term rainfall pattern has improved. In response to soil degradation, water shortage, socio-economic and policy changes, farmers have tended to gradually change from annual cropping to tree planting and livestock production to cope with the problems of soil degradation, water scarcity and smaller farms. Income diversification through the sale of wood and cattle dung is becoming a major livelihood strategy. Apparently, however, little attention has been paid to investments in soil and water conservation (SWC) and local soil fertility amendments. In particular, increased erosion and related high nutrient losses in sediments, as well as the removal of potentially available soil nutrients through the sale of manure threatens to damage agricultural sustainability in the area.  相似文献   

13.
ABSTRACT: Much of north-central Iowa is characterized by flat topography, shallow depressions, and poor natural surface drainage. Land drainage systems comprising of tile drains and agricultural drainage wells (ADWs) are used as outlets for subsurface drainage of cropland under corn and soybean production. Studies have shown that these drainage systems, mainly the ADWs, are potential routes for agricultural chemicals to underground aquifers. To protect the region's vital groundwater resource, researchers are evaluating alternative outlets ranging from complete closure of existing ADWs (and creation of wetlands) to continued use of ADWs and chemical management in a comprehensive policy framework. This paper presents the results of a study designed to provide government jurisdictions, farmers, and land managers information for assessing the impact of closing ADWs on crop production. The study couples a geographic information systems database for a 471-hectare watershed in Humboldt County, Iowa, with a groundwater flow model (MODFLOW) and an empirical crop yield loss model to predict long-term effects of complete closure of ADWs on crop production. The cropland areas inundated and the relative crop yield loss due to ADW closure are determined as a function of long-term climatic data. The results indicate that elimination of drainage outlets in the watershed could result in ponding of low-lying areas and poorly drained soils, making them unsuitable for crop production. Such wetness also decreases the efficiency of production in the no-ponding areas by isolating fields, and the crop yield loss can be reduced by an annual average of about 18 percent.  相似文献   

14.
The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation, stabilize agricultural production, promote sustainable use of cultivated land and guarantee food security.  相似文献   

15.
ABSTRACT: Resolution of the input GIS data used to parameterize distributed‐parameter hydrologic/water quality models may affect uncertainty in model outputs and impact the subsequent application of model results in watershed management. In this study we evaluated the impact of varying spatial resolutions of DEM, land use, and soil data (30 × 30 m, 100 × 100 m, 150 × 150 m, 200 × 200 m, 300 × 300 m, 500 × 500 m, and 1,000 × 1,000 m) on the uncertainty of SWAT predicted flow, sediment, NO3‐N, and TP transport. Inputs included measured hydrologic, meteorological, and watershed characteristics as well as water quality data from the Moores Creek watershed in Washington County, Arkansas. The SWAT model output was most affected by input DEM data resolution. A coarser DEM data resolution resulted in decreased representation of watershed area and slope and increased slope length. Distribution of pasture, forest, and urban areas within the watershed was significantly affected at coarser resolution of land use and resulted in significant uncertainty in predicted sediment, NO3‐N, and TP output. Soils data resolution had no significant effect on flow and NO3‐N predictions; however, sediment was overpredicted by 26 percent, and TP was underpredicted by 26 percent at 1,000 m resolution. This may be due to change in relative distribution of various hydrologic soils groups (HSGs) in the watershed. Minimum resolution for input GIS data to achieve less than 10 percent model output error depended upon the output variable of interest. For flow, sediment, NO3‐N, and TP predictions, minimum DEM data resolution should range from 30 to 300 m, whereas minimum land use and soils data resolution should range from 300 to 500 m.  相似文献   

16.
ABSTRACT: Long-term land use and reservoir sedimentation were quantified and linked in a small agricultural reservoir-watershed system without having historical data. Land use was determined from a time sequence of aerial photographs, and reservoir sedimentation was determined from cores with 137Cs dating techniques. They were linked by relating sediment deposition to potential sediment production which was determined by the Universal Soil Loss Equation and by SCS estimates for gullied land. Sediment cores were collected from Tecumseh Lake, a 55-ha reservoir with a 1,189-ha agricultural watershed, constructed in 1934 in central Oklahoma. Reservoir sediment deposition decreased from an average of 5,933 Mg/yr from 1934 to 1954, to 3,179 Mg/yr from 1954 to 1962, and finally to 1,017 Mg/yr from 1962 to 1987. Potential sediment production decreased from an average of 29,892 to 11,122 and then to 3,589 Mg/yr for the same time periods as above, respectively. Reductions in deposition and sediment production corresponded to reductions in cultivated and abandoned cropland which became perennial pasture. Together, cultivated and abandoned cropland accounted for 59 percent of the watershed in 1937, 24 percent in 1954, and 10 percent in 1962. Roadway erosion, stream bank erosion, stored stream channel sediment, and long-term precipitation were considered, but none seemed to play a significant role in changing sediment deposition rates. Instead, the dominant factor was the conversion of fields to perennial pastures. The effect of conservation measures on reservoir sedimentation can now be quantified for many reservoirs where historical data is not available.  相似文献   

17.
Within the Southeastern (SE) Coastal Plain of the U.S., numerous freshwaters and estuaries experience eutrophication with significant nutrient contributions by agricultural non-point sources (NPS). Riparian buffers are often used to reduce agricultural NPS yet the effect of buffers in the watershed is difficult to quantify. Using corrected Akaike information criterion (AICc) and model averaging, we compared flow-path riparian buffer models with land use/land cover (LULC) models in 24 watersheds from the SE Coastal Plain to determine the ability of riparian buffers to reduce or mitigate stream total nitrogen concentrations (TNC). Additional models considered the relative importance of headwaters and artificial agricultural drainage in the Coastal Plain. A buffer model which included cropland and non-buffered cropland best explained stream TNC (R 2 = 0.75) and was five times more likely to be the correct model than the LULC model. The model average predicted that current buffers removed 52 % of nitrogen from the edge-of-field and 45 % of potential nitrogen from the average SE Coastal Plain watershed. On average, 26 % of stream nitrogen leaked through buffered cropland. Our study suggests that stream TNC could potentially be reduced by 34 % if buffers were adequately restored on all cropland. Such estimates provide realistic expectations of nitrogen removal via buffers to watershed managers as they attempt to meet water quality goals. In addition, model comparisons of AICc values indicated that non-headwater buffers may contribute little to stream TNC. Model comparisons also indicated that artificial drainage should be considered when accessing buffers and stream nitrogen.  相似文献   

18.
Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.  相似文献   

19.
In contrast to its counterparts in Europe and North America, the Australian National Pollutant Inventory (NPI) includes estimates of aggregated emissions of nutrients (total nitrogen and total phosphorus) from catchments and facilities. Sparse or inadequate data limit the extent to which nutrient exports may be estimated from direct observations. The paucity of data for calibration and simulation limits the use of sophisticated models in most Australian catchments. Therefore, a simple unit-area load model-Catchment Management Support System (CMSS)-was selected to estimate aggregated catchment emissions for the NPI. Estimates from models like CMSS are sensitive to spatial and categorical resolution of land uses identified within the catchment and to nutrient generation rates selected for each land use category. Using three Hawkesbury-Nepean subcatchments, we show that while high spatial resolution of land use mapping is useful, only four or five major land use categories with carefully selected generation rates were required to estimate potential nutrient exports sufficiently well and to determine subcatchments contributing most. Nutrient emission estimates proved to be highly dependent on selection of generation rates so a bootstrap technique was adopted to reduce subjectivity and to improve estimates of confidence limits. This led to a specification of new generation rates for Natural, Unimproved pasture, Rural and Urban land uses and to establishment of uncertainty limits.  相似文献   

20.
Traditionally in the application of hydrologic/water quality (H/WQ) models, rainfall is assumed to be spatially homogeneous and is considered not to contribute to output uncertainty. The objective of this study was to assess the uncertainty induced in model outputs solely due to rainfall spatial variability. The study was conducted using the AGNPS model and the rainfall pattern captured by a network of 17 rain gauges. For each rainfall event, the model was run using the rainfall captured by each rain gauge, one at a time, under the assumption of rainfall spatial homogeneity. A large uncertainty in the modeled outputs resulted from the rainfall spatial variability. The uncertainty in the modeled outputs exceeded the input rainfall uncertainty. Results of this study indicate that spatial variability of rainfall should be captured and used in H/WQ models in order to accurately assess the release and transport of pollutants. A large uncertainty in the model outputs can be expected if this rainfall property is not taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号