首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two total maximum daily load (TMDL) studies were performed for Linville Creek in Rockingham County, Virginia, to address bacterial and benthic impairments. The TMDL program is an integrated watershed management approach required by the Clean Water Act. This paper describes the procedures used by the Center for TMDL and Watershed Studies at Virginia Tech to develop the Linville Creek TMDLs and discusses the key lessons learned from and the ramifications of the procedures used in these and other similar TMDL studies. The bacterial impairment TMDL was developed using the Hydrological Simulation Program-Fortran (HSPF). Fecal coliform loads were estimated through an intensive source characterization process. The benthic impairment TMDL was developed using the Generalized Watershed Loading Function (GWLF) model and the reference watershed approach. The bacterial TMDL allocation scenario requires a 100% reduction in cattle manure direct-deposits to the stream, a 96% reduction in nonpoint-source loadings to the land surface, and a 95% reduction in wildlife direct-deposits to the stream. Sediment was identified as the primary benthic stressor. The TMDL allocation scenario for the benthic impairment requires an overall reduction of 12.3% of the existing sediment loads. Despite the many drawbacks associated with using watershed-scale models like HSPF and GWLF to develop TMDLs, the detailed watershed and pollutant-source characterization required to use these and similar models creates information that stakeholders need to select appropriate corrective measures to address the cause of the water quality impairment when implementing the TMDL.  相似文献   

2.
This study examines sources of fecal coliform in Segment 2302 of the Rio Grande, located south of the International Falcon Reservoir in southern Texas. The watershed is unique because the contributing drainage areas lie in Texas and Mexico. Additionally, the watershed is mostly rural, with populated communities known as “colonias.” The colonias lack sewered systems and discharge sanitary water directly to the ground surface, thus posing an increased health hazard from coliform bacteria. Monitoring data confirm that Segment 2302 is not safe for contact recreation due to elevated fecal coliform levels. The goal of the study was to simulate the observed exceedences in Segment 2302 and evaluate potential strategies for their elimination. Fecal coliform contributions from ranching and colonia discharges were modeled using the Hydrologic Simulation Program‐Fortran (HSPF). Model results indicated that the regulatory 30‐day geometric mean fecal coliform concentration of 200 colony forming units (cfu) per 100 milliliters is exceeded approximately three times per year for a total of 30 days. Ongoing initiatives to improve wastewater facilities will reduce this to approximately once per year for 14 days. Best management practices will be necessary to reduce cattle access to streams and eliminate all exceedences. The developed model was limited by the relatively sparse flow and fecal coliform data.  相似文献   

3.
Bacterial contamination accounts for more than 60% of the impairments included on the 2008 Texas 303(d) List. Many of these bacterial impairments are along the Texas Gulf Coast because coastal waters often are regulated for oyster harvesting, which have strict water quality standards. Under the Clean Water Act, each one of these impaired waterbodies requires a total maximum daily load (TMDL) study to be performed. A recent, statewide study recommended the development and application of simple modeling approaches to address the majority of Texas's bacteria TMDLs, including “… simple load duration curve, GIS [geographic information systems], and/or mass balance models.” We developed the TMDL Balance model in response to this recommendation. TMDL Balance is a steady state, mass balance, GIS‐based model for simulating pollutant loads and concentrations in coastal systems. The model uses plug‐flow reactor and continuously‐stirred tank reactor equations to route spatially distributed point and nonpoint source loads through a watershed via overland flow, non‐tidal flow, and tidal flow, decaying the loads via first‐order kinetics. In this paper, we explain the development of the watershed loading portion of the TMDL Balance model, demonstrating the methodology through a case study: computing bacterial loads in the Copano Bay watershed of southeast Texas. The application highlights an example of distributing bacterial sources spatially based on land use data.  相似文献   

4.
Because the large rivers of the Seine watershed have a low microbiological water quality, the main sources of fecal contamination were investigated in the present study. The inputs of the point (wastewater treatment plants (WWTPs) effluents) and non-point sources (surface runoff and soil leaching) of fecal bacteria were quantified for Escherichia coli and intestinal enteroccoci used as bacterial indicators. In order to assess the contamination through non-point sources, fecal indicators abundance was estimated in samples collected in small streams located in rural areas upstream from all point sources; these small rivers were characterized by the land use of their watershed. Bacterial indicator numbers were also measured in effluents of WWTPs, some using classical treatment (settling followed by activated sludge process) and some using an additional disinfection stage (UV irradiation). These data were used to estimate the respective importance of each type of source at the scale of the whole Seine river watershed taking into account the land use and the population density. It shows the predominant importance of the point sources of fecal indicator bacteria at the scale of the whole watershed. In a scenario in which activated sludge treatment would be complemented with UV in all WWTPs located in this watershed, the non-point sources of fecal indicator bacteria would be dominant.  相似文献   

5.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   

6.
Water samples from streams and springs in the Great Smoky Mountains National Park were analyzed for fecal coliform, fecal streptococcus, and total coliform bacteria. Levels of bacteria were found to be highly variable but related to elevation, time of year, type of water source, and water level of the streams. Visitors did not seem to be major contributors to bacterial contamination. Levels of fecal coliform and total coliform in most water samples were unsuitable for drinking without treatment. Tennessee state standards for body contact recreation (swimming and wading) were exceeded in a few samples but none from streams suitable for swimming. As a result of these findings, park managers increased efforts to inform visitors of the need to treat drinking water and removed improvements at backcountry springs which tended to give the springs the image of safe, maintained water sources.  相似文献   

7.
ABSTRACT: Under the Clean Water Act (CWA) program, the Texas Commission on Environmental Quality (TCEQ) listed 110 stream segments in the year 2000 with pathogenic bacteria impairment. A study was conducted to evaluate the probable sources of pollution and characterize the watersheds associated with these impaired water bodies. The primary aim of the study was to group the water bodies into clusters having similar watershed characteristics and to examine the possibility of studying them as a group by choosing models for total maximum daily load (TMDL) development based on their characteristics. This approach will help to identify possible sources and determine appropriate models and hence reduce the number of required TMDL studies. This in turn will help in reducing the effort required to restore the health of the impaired water bodies in Texas. The main characteristics considered for the classification of water bodies were land use distribution within the watershed, density of stream network, average distance of land of a particular use to the closest stream, household population, density of on‐site sewage facilities (OSSFs), bacterial loading from different types of farm animals and wildlife, and average climatic conditions. The climatic data and observed instream fecal coliform bacteria concentrations were analyzed to evaluate seasonal variability of instream water quality. The grouping of water bodies was carried out using the multivariate statistical techniques of factor analysis/principal component analysis, cluster analysis, and discriminant analysis. The multivariate statistical analysis resulted in six clusters of water bodies. The main factors that differentiated the clusters were found to be bacterial contribution from farm animals and wildlife, density of OSSFs, density of households connected to public sewers, and land use distribution.  相似文献   

8.
Abstract: Computer simulation models are used extensively for the development of total maximum daily loads (TMDLs). Specifically, the Hydrological Simulation Program‐FORTRAN (HSPF) is used in Virginia for the development of TMDLs for bacteria impairments. HSPF estimates discharge from a reach using function tables (FTABLES). The FTABLE relates stream stage, surface area, and volume to discharge from a reach. In this study, five FTABLE estimation methods were assessed by comparing their effect on various simulation outputs. Four “field‐based” methods used detailed cross‐sectional data collected via site surveys. A fifth “digital‐based” method used digital elevation data in combination with the Natural Resources Conservation Service Regional Hydraulic Geometry Curves. Sets of FTABLEs created using each method were used in simulations of instream bacteria concentration for a Virginia watershed. Several statistics relating to instream bacteria including long‐term average concentration, die‐off, and the violation rate of Virginia’s bacteria criterion were compared. The pair‐wise Student’s t‐test was used for the comparison. The HSPF simulations that used FTABLES estimated from digitally based data consistently produced significantly higher long‐term average instream fecal bacteria concentrations, significantly lower instream fecal bacteria die‐off, which is related to differences in residence time in the streams, and significantly higher water quality criterion violation rates.  相似文献   

9.
Ecological risk assessment (ERA) evaluates potential causal relationships between multiple sources and stressors and impacts on valued ecosystem components. ERAs applied at the watershed scale have many similarities to the place-based analyses that are undertaken to develop Total Maximum Daily Loads (TMDLs), in which linkages are established between stressors, sources, and water quality standards, including support of designated uses. TMDLs focus on achieving water quality standards associated with attainment of designated uses. In attempting to attain the water quality standard, many TMDLs focus on the stressor of concern rather than the ecological endpoint or indicators of the designated use that the standard is meant to protect. A watershed ecological risk assessment (WERA), at least in theory, examines effects of most likely stressors, as well as their probable sources in the watershed, to prioritize management options that will most likely result in meeting environmental goals or uses. Useful WERA principles that can be applied to TMDL development include: development and use of comprehensive conceptual models in the Problem Identification step of TMDLs; use of a transparent process for selecting Numeric Targets for TMDLs based on assessment endpoints derived from the management goal or designated use under consideration; analysis of co-occurring stressors likely to cause beneficial use impairment based on the conceptual model; use of explicit uncertainty analyses in the Linkage Analysis step of TMDL development; and frequent stakeholder interactions throughout the process. WERA principles are currently most applicable to those TMDLs in which there is no numeric standard and, therefore, indicators and targets need to be developed, such as many nutrient or sediment TMDLs. WERA methods can also be useful in determining TMDL targets in situations where simply targeting the water quality standard may re-attain the numeric criterion but not the broader designated use. Better incorporation of problem formulation principles from WERA into the TMDL development process would be helpful in improving the scientific rigor of TMDLs.  相似文献   

10.
ABSTRACT: This study presents the results of fecal coliform (FC) sampling in the Rawls Creek, South Carolina, watershed during 1999 and 2000. The work was undertaken because the watershed is listed on the 303(d) list for South Carolina due to FC excursions. The watershed is 43.8 percent residential, 35 percent forest, 5.7 percent mixed urban, 4.9 percent commercial, and 4.8 percent agriculture. Samples were taken at 15 stations during eight field trips divided into two phases to characterize FC inputs from subbasins and to integrate results from upstream sampling. FC concentrations ranged from 135 to 730 colonies/100 ml. Results suggest that retention ponds in the area are a significant factor in attenuation of FC concentrations. Catchments with the largest contiguous impervious areas are the greatest source of FC. The highest concentrations of FC were observed at stations just downstream from a large detention basin that intercepts storm runoff from a large commercial area. Further analysis of the design and performance of that structure is suggested. The Koon Branch tributary is less than 20 percent of the land area in the watershed but may contribute 40 percent of the fecal loading. The results of this study confirm the importance of site assessments to aid understanding of nonpoint source pollution in complex watersheds.  相似文献   

11.
Abstract: In this study, a set of nitrogen reduction strategies were modeled to evaluate the feasibility of improving water quality to meet total maximum daily loads (TMDLs) in two agricultural watersheds. For this purpose, a spatial‐process model was calibrated and used to predict monthly nitrate losses (1994‐96) from Sand and Bevens Creek watersheds located in south‐central Minnesota. Statistical comparison of predicted and observed flow and nitrate losses gave r2 coefficients of 0.75 and 0.70 for Sand Creek watershed and 0.72 and 0.67 for Bevens Creek watershed, respectively. Modeled alternative agricultural management scenarios included: six different N application rates over three application timings and three different percentages of crop land with subsurface drainage. Predicted annual nitrate losses were then compared with nitrate TMDLs assuming a 30% reduction in observed nitrate losses is required. Reductions of about 33 (8.6 to 5.8 kg/ha) and 35% (23 to 15 kg/ha) in existing annual nitrate losses are possible for Sand and Bevens Creek watersheds, respectively, by switching the timing of fertilizer application from fall to spring. Trends towards increases in tile‐drained crop land imply that attaining nitrate TMDLs in future may require other alternative management practices in addition to fertilizer management such as partial conversion of crop land to pasture.  相似文献   

12.
Abundance of fecal caliform bacteria is a weak index of the presence of human pathogens in wastewater entering coastal waters. In spite of this, use of fecal caliform indices for management purposes is widespread. To gain insight into interpretation of fecal coliform data, we evaluated size of stocks of fecal coliforms in water, sediments, and sea wrack, in Buttermilk Bay, a coastal embayment in Massachusetts. Sediments contained most of the fecal coliforms. Fecal coliforms in sediments were as much as one order of magnitude more abundant than in the water column or in sea wrack. The fecal coliforms in sediments of Buttermilk Bay were so abundant that resuspension of fecal coliforms from just the top 2 cm of muddy sediments could add sufficient cells to the water column to have the whole bay exceed the federal limit of fecal coliforms for shellfishing. The major sources of fecal coliforms to the bay were water-fowls, surface runoff, groundwater, and streams. Waterfowl were the largest source of fecal coliforms during cold months; surface runoff, streams, and groundwater were most important during warm months. Redirection of surface runoff pipes is unlikely to be a very successful management action since contributions via this source are insufficient to account for the measured increases in concentrations of fecal coliforms in water. Removal of waterfowl is also unlikely to be useful, since fecal coliform concentrations leading to closures of shellfish beds and swimming areas are most frequent during warm months when waterfowl are rarest. Rates of loss of fecal caliform cells from the water column by death and tidal exchange were high. Mortality of cells was about an order of magnitude larger than losses by tidal exchange. The amounts of fecal coliforms brought into the bay by waterfowl, surface runoff, groundwater, and streams are an order of magnitude smaller than the losses by mortality and tidal removal. This implies that there is an additional source of fecal coliforms within the bay. We suggest that resuspension of the upper layers of sediments can easily account for the fecal coliforms present in the water. Fecal coliform content of water and shellfish were not correlated. In contrast, sediment and shellfish fecal coliform abundances were significantly related. Monitoring of fecal coliforms in sediments may provide a better assessment of shellfish than sampling of water. The large fecal coliform stock in sediments should be the first priority for management. Efforts ought to be directed toward the reduction of sediment fecal coliform stocks. Lowering nutrient additions to coastal water bodies may be one practical approach.  相似文献   

13.
ABSTRACT: Many water bodies within the United States are contaminated by non‐point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollutant that is of critical concern are pathogens derived from animal wastes, including humans. The potential presence of pathogens is identified by testing the water for fecal conform, a bacteria also associated with animal wastes. Water contaminated by animal wastes are most often associated with urban and agricultural areas, thus it is postulated that by utilizing land cover indicators, those water bodies that may be at risk of fecal coliform contamination may be identified. This study utilizes land cover information derived from the Multi‐Resolution Land Characterization (MRLC) project to analyze fecal coliform contamination in South Carolina. Also utilized are 14 digit hydro‐logic unit code (HUC) watersheds of the state, a digital elevation model, and test point data stating whether fecal coliform levels exceeded State Water Quality Standards. Proportions of the various land covers are identified within the individual watersheds and then analyzed using a logistic regression. The results reveal that watersheds with large proportions of urban land cover and agriculture on steep slopes had a very high probability of being impaired. (KEY TERMS: Geographic Information Systems; land use planning; nonpoint source pollution; statistical analysis; water quality; watershed management.)  相似文献   

14.
ABSTRACT: The Cheat River of West Virginia is impaired by acid mine drainage (AMD). Fifty‐five of its river segments were placed on the 303(d) list, which required calculations of total maximum daily load (TMDL) to meet the water quality criteria for pH, total iron, aluminum, manganese, and zinc. An existing watershed model was enhanced to simulate AMD as nonpoint source load. The model divided a watershed into a network of catchments and river segments. Each catchment was divided into soil layers, which could contain pyrite, calcite and other minerals. A kinetic expression was used to simulate pyrite oxidation as a function of oxygen in the soil voids. Oxygen in the soil voids was consumed by pyrite oxidation and replenished by earth breathing. The by‐products of pyrite oxidation were calculated according to its mass action equations. Chemical equilibrium was used to account for the speciation of ferrous and ferric irons and precipitation of metal hydroxides. Simulated hydrology and water quality were compared to available data. The USEPA used the calibrated model to calculate the TMDLs in the Cheat River Watershed.  相似文献   

15.
ABSTRACT: Surface water in the Long Creek watershed, located in western Piedmont region of North Carolina, was monitored from 1993 to 2001. The 8,190 ha watershed has undergone considerable land use and management changes during this period. Land use surveys have documented a 60 percent decrease in cropland area and a more than 200 percent increase in areas being developed into new homes. In addition, more than 200 conservation practices have been applied to the cropland and other agricultural land that remains in production. The water quality of Long Creek was monitored by collecting grab samples at four sites along Long Creek and continuously monitoring discharge at one site. The monitoring has documented a 70 percent reduction in median total phosphorus (TP) concentrations, with little reductions in nitrate and total Kjel‐dahl nitrogen, or suspended sediment levels. Fecal coliform (FC) and streptococci (FS) levels declined significantly downstream as compared to upstream during the last four years of monitoring. This decrease was attributed to the implementation of waste management practices and livestock exclusion fencing on three dairy operations in the watershed. Annual rainfall and discharge increased steadily until peaking in the third year of the monitoring period and varied while generally decreasing during the last four years of the project. An array of observation, pollutant concentration, and hydrologic data provide considerable evidence to suggest that the implementation of BMPs in the watershed have significantly reduced phosphorus and bacteria levels in Long Creek.  相似文献   

16.
ABSTRACT: A study of stream base flow and NO3‐N concentration was conducted simultaneously in 51 subwatersheds within the 116‐square‐kilometer watershed of East Mahantango Creek near Klingerstown, Pennsylvania. The study was designed to test whether measurable results of processes and observations within the smaller watersheds were similar to or transferable to a larger scale. Ancillary data on land use were available for the small and large watersheds. Although the source of land‐use data was different for the small and large watersheds, comparisons showed that the differences in the two land‐use data sources were minimal. A land use‐based water‐quality model developed for the small‐scale 7.3‐square‐kilometer watershed for a previous study accurately predicted NO3‐N concentrations from sampling in the same watershed. The water‐quality model was modified and, using the imagery‐based land use, was found to accurately predict NO3‐N concentrations in the subwatersheds of the large‐scale 116‐square‐kilometer watershed as well. Because the model accurately predicts NO3‐N concentrations at small and large scales, it is likely that in second‐order streams and higher, discharge of water and NO3‐N is dominated by flow from smaller first‐order streams, and the contribution of ground‐water discharge to higher order streams is minimal at the large scale.  相似文献   

17.
Recent studies suggest that host origin databases for bacterial source tracking (BST) must contain a large number of isolates because bacterial subspecies change with geography and time. A new targeted sampling protocol was developed as a prelude to BST to minimize these changes. The research was conducted on the Sapelo River, a tidal river on the Georgia coast. A general sampling of the river showed fecal enterococcal numbers ranging from <10 (below the limit of detection) to 990 colony-forming units (CFU) per 100 mL. Locations with high enterococcal numbers were combined with local knowledge to determine targeted sampling sites. Fecal enterococcal numbers around one site ranged from <10 to 24,000 CFU per 100 mL. Bacterial source tracking was conducted to determine if a wastewater treatment facility at the site was responsible for this contamination. The fecal indicator bacterium was Enterococcus faecalis. Ribotyping, automated with a RiboPrinter (DuPont Qualicon, Wilmington, DE), was the BST method. Thirty-seven ribotypes were observed among 83 Ent. faecalis isolates obtained from the Sapelo River and the wastewater lagoon. Sixteen ribotypes were associated with either the river or the lagoon, and only five ribotypes (14%) were shared. Nevertheless, these five ribotypes represented 39 of the 83 Ent. faecalis isolates, almost a majority (47%). These results suggest that the fecal contamination in the river came from the wastewater treatment facility. As a prelude to BST, targeted sampling minimized subspecies changes with geography and time, and eliminated the need for a permanent host origin database by restricting BST to a small geographic area and requiring sampling to be completed in one day.  相似文献   

18.
ABSTRACT: The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are on karst terrain. The purpose of this study was to compare fecal bacteria densities in karst groundwater impacted by two primary agricultural land uses in central Appalachia. Fecal bacteria densities were measured in cave streams draining two primary land management areas. The first area was pasture serving a beef cow-calf operation. The second area was a dairy. Neither area had best management practices in place for controlling animal wastes. Median fecal coliform and fecal streptococcus densities were highest in cave streams draining the dairy. Median fecal coliform densities in the dairy-impacted stream were greater than 4,000 CFU/100 ml and the median fecal coliform densities in the pasture-impacted streams were less than 10 CFU/100 ml. Median fecal streptococcus densities in the same streams were greater than 2,000 CFU/100 ml and 32 CFU/100 nil, respectively. A second dairy, with best management practices for control of animal and milkhouse waste, did not appear to be contributing significant amounts of fecal bacteria to the karst aquifer. It was concluded that agriculture was affecting bacterial densities in the karst aquifer. New management practices specifically designed to protect karst groundwater resources may be one way to protect the groundwater resource.  相似文献   

19.
Models that accurately predict fecal coliform bacteria (FCB) concentrations, one of the most widely used measures of estuarine water quality, are needed to improve land use decision-making. Rapidly occurring changes in coastal land uses and the influence on water quality increases the urgency of having improved decision tools. For this study, samples were collected monthly from six coastal ponds, two tidal creeks and four shallow water wells for up to 212 years. These data were used along with other measures of environmental conditions and land classes within each watershed to construct quantitative relationships between combinations of variables and both total and presumed wildlife sources of FCB. Linear regression, bootstrapping and generalized additive modeling that incorporates both linear and nonlinear terms were used. Results of repeated simultaneous sampling on the same tide stage of ponds and downstream estuarine creeks suggest that most FCB come from wildlife and that the ponds effectively remove these bacteria except immediately following heavy rainfall. Predictive models for concentrations of total and presumed wildlife bacteria are provided along with simple measures to estimate watershed boundaries. It is proposed that these tools can be used to minimize impacts on receiving water body quality. The models can be used to test alternative development approaches within coastal watersheds similar to that found in the southeastern USA coastal zone as well as to evaluate specific proposed landscape alterations.  相似文献   

20.
ABSTRACT: Bacterial densities (total coliform, fecal coliform, and fecal streptococci) and suspended solids in runoff from a feedlot, pasture, and corn field were measured. Densities of fecal coliform were highest from the feedlot but were 1000 to 10,000 times greater than the water quality standard for swimmable waters from all three land uses. Densities of fecal streptococci were highest from the corn field, which suggests that wildlife are the source of bacteria. Fecal coliform/fecal streptococci ratios distinguished cattle from wildlife as the source of bacterial pollution both among land uses and among seasons of the year. Suspended solids concentrations in runoff ranged from 423 to 925 mg/l and were highest from the corn field. A Geographic Information System (GIS), which utilizes a raster or grid-cell format, was developed to include algorithms associated with non-point source pollution. The system accepts digitally mapped information on soil type, topography, and land use. It calculates characteristics such as slope and slope length, and relates these characteristics to soils and land use parameters in order to produce three dimensional maps of runoff potential, sediment pollution potential, and bacterial pollution potential. It offers the advantages of retaining the geographic character of pollution potential information and of conveying in three-dimensional graphical terms the effects of topography, soil type, land use, and land management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号