首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The contribution of fenitrothion and its microbial metabolites to the mutagenicity of a fenitrothion-containing solution was investigated during anaerobic biodegradation. Although a mixed culture of bacteria obtained from a paddy field degraded fenitrothion and reduced its concentration from 4.6 to 0.1 mg/l in 6 days, the indirect mutagenicity of the solution in Salmonella strain YG1029 increased. This increase was found to be partially due to amino-fenitrothion generated during the biodegradation. In addition, other unidentified metabolites contributed to the mutagenicity. In contrast, the indirect mutagenicity in strain YG1042, which was initially large because of fenitrothion, then decreased, and increased again. This increase in mutagenicity was also due to amino-fenitrothion and other unidentified metabolites. The mutagenicity in strains YG1029 and YG1042 decreased after day 6. The greatest contribution of amino-fenitrothion to the mutagenicity was calculated to be 73% and 61% in YG1029 and YG1042 on day 3 of incubation, respectively. That of unidentified metabolites was calculated at 49% and 61% on day 20, respectively. Therefore, because not all the toxic metabolites of a compound can be identified, it is important to evaluate the toxicity of a whole solution in a bioassay such as the Ames assay rather than deducing the toxicity of the solution from the combined toxicities of known metabolites.  相似文献   

2.
Matsushita T  Matsui Y  Saeki R  Inoue T 《Chemosphere》2005,61(8):1134-1141
Previous studies have revealed that the mutagenicity of fenitrothion increases during anaerobic biodegradation, suggesting that this insecticide's mutagenicity could effectively increase after it pollutes anaerobic environments such as lake sediments. To investigate possible changes to the mutagenicity of fenitrothion under aerobic conditions after it had already been increased by anaerobic biodegradation, batch incubation cultures were maintained under aerobic conditions. The mutagenicity, which had increased during anaerobic biodegradation, decreased under aerobic conditions with aerobic or facultative bacteria, but did not disappear completely in 22 days. In contrast, it did not change under aerobic conditions without bacteria or under continued anaerobic conditions. These observations suggest that the mutagenicity of anaerobically metabolized fenitrothion would not necessarily decrease after it arrives in an aerobic environment: this would depend on the presence of suitable bacteria. Therefore, fenitrothion-derived mutagenic compounds may pollute the water environment, including our drinking water sources, after accidental pollution of aerobic waters. Although amino-fenitrothion generated during anaerobic biodegradation of fenitrothion was the principal mutagen, non-trivial contributions of other, unidentified metabolites to the mutagenicity were also observed.  相似文献   

3.
The mutagenicity of chlornitrofen (CNP)-containing solutions has been reported to increase during anaerobic biodegradation. In the present study, the fate of this increased mutagenicity under subsequent aerobic and anaerobic incubation conditions was investigated using two Salmonella tester strains, YG 1024 (a frameshift-detecting strain) and YG 1029 (a base-pair-substitution-detecting strain). Mutagenicity for both YG 1024 and YG 1029 strains increased during nine-day anaerobic biodegradation. During subsequent anaerobic incubation, the increased mutagenicity decreased gradually for YG 1029 but did not change significantly for YG 1024. By contrast, the increased mutagenicity decreased rapidly after the conversion to aerobic incubation for both YG 1024 and YG 1029 strains. The rapid decrease in mutagenicity during aerobic incubation was due to decreases, not only in an identified mutagenic metabolite (CNP-amino) but also in unidentified mutagenic metabolites.  相似文献   

4.

The mutagenicity of chlornitrofen (CNP)-containing solutions has been reported to increase during anaerobic biodegradation. In the present study, the fate of this increased mutagenicity under subsequent aerobic and anaerobic incubation conditions was investigated using two Salmonella tester strains, YG1024 (a frameshift-detecting strain) and YG1029 (a base-pair-substitution-detecting strain). Mutagenicity for both YG1024 and YG1029 strains increased during nine-day anaerobic biodegradation. During subsequent anaerobic incubation, the increased mutagenicity decreased gradually for YG1029 but did not change significantly for YG1024. By contrast, the increased mutagenicity decreased rapidly after the conversion to aerobic incubation for both YG1024 and YG1029 strains. The rapid decrease in mutagenicity during aerobic incubation was due to decreases, not only in an identified mutagenic metabolite (CNP-amino) but also in unidentified mutagenic metabolites.  相似文献   

5.
We aimed to: (1) evaluate the change in mutagenicity of a fenitrothion-containing solution during photolysis and (2) elucidate mutagenic compounds that were possible major contributors to mutagenicity. A batch test involving irradiation by natural sunlight was conducted on the solution, and then HPLC fractionation, mutagenicity testing, and gas chromatography-mass spectrometry (GC-MS) analysis were performed on the irradiated solution. During the 15-day photolysis, fenitrothion was almost completely decomposed, and 34 transformed products (TPs) were generated. Photolysis decreased the mutagenicity of the fenitrothion-containing solution for base-pair-substitution-detecting tester strains (YG1026 and YG1029) but increased mutagenicity for frameshift-detecting tester strains (YG1021 and YG1024). One TP was identified as a potential source of the increased mutagenicity; its molecular formula was estimated to be (CH(3)O)(2)PS-O-C(8)H(6)NO.  相似文献   

6.
Biodegradable polymers are designed to resist a number of environmental factors during use, but to be biodegradable under disposal conditions. The biodegradation of polylactide (PLLA) was studied at different elevated temperatures in both aerobic and anaerobic, aquatic and solid state conditions. In the aerobic aquatic headspace test the mineralisation of PLLA was very slow at room temperature, but faster under thermophilic conditions. The clear effect of temperature on the biodegradability of PLLA in the aquatic tests indicates that its polymer structure has to be hydrolysed before microorganisms can utilise it as a nutrient source. At similar elevated temperatures, the biodegradation of PLLA was much faster in anaerobic solid state conditions than in aerobic aquatic conditions. The behaviour of PLLA in the natural composting process was similar to that in the aquatic biodegradation tests, biodegradation starting only after the beginning of the thermophilic phase. These results indicate that PLLA can be considered as a compostable material, being stable during use at mesophilic temperatures, but degrading rapidly during waste disposal in compost or anaerobic treatment facilities.  相似文献   

7.
This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L?1, are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment.  相似文献   

8.
Anaerobic degradation behavior of nonylphenol polyethoxylates in sludge   总被引:1,自引:0,他引:1  
Lu J  Jin Q  He Y  Wu J  Zhang W  Zhao J 《Chemosphere》2008,71(2):345-351
Anaerobic biodegradation behavior of nonylphenol polyethoxylates (NPEOs) was investigated. Results showed that terminal electron acceptors, organic matters, initial concentration, and temperature had great influence on the anaerobic biodegradation of NPEOs. Anaerobic biodegradation of NPEOs could be enhanced by adding sulfate or nitrate while this process could be inhibited by adding organic matters. The maximum removal rate increased 1.24 microM d(-1) for each ten micromoles increase in initial concentration. The decrease in temperature caused a sharp decrease in the removal efficiency of NPEOs. The temperature coefficient (PHI) for the anaerobic biodegradation of NPEOs was 0.01 degrees C(-1). Nonylphenol (NP), the typical intermediate of NPEOs, could inhibit the anaerobic biodegradation of NPEOs only at high concentration. However, these environmental factors had no effect on the anaerobic biodegradation pathway of NPEOs. The accumulation of NP and short-chain NPEOs during NPEO biodegradation led to a significant increase in the estrogenic activity during the biodegradation period.  相似文献   

9.
A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.  相似文献   

10.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   

11.
Abstract

Ambient air particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) samples were collected during summer and autumn using a Staplex high-volume air sampler. They were later extracted with dichloromethane in a Soxhlet apparatus. Polyaromatic hydrocarbon (PAH) content in extracts was determined by the high-performance liquid chromatography technique using fluorescence detection, whereas the nitro-PAH content was determined by gas chromatography using mass detection. Four Salmonella typhimurium strains (TA98, TA100, YG1041, and YG1042) were used in assays conducted with and without metabolic activation. The extracts were also tested with the SOS chromotest supplied by Environmental Biodetection Products Incorporated. The obtained results confirmed the Salmonella assay and the SOS chromotest usability for the purpose of atmospheric pollution monitoring within an urban agglomeration. The atmospheric pollution extracts under examination differed among each other regarding total content and percentage of individual compounds, depending on the season of sampling. The highest total PAH content and the highest nitro-PAH content in the tested samples as well as the most extensive range of detected compounds were found in the autumn season (heating season). The highest mutagenicity was noted for PM2.5 samples collected in autumn. The high values of mutagenicity ratios and induction factors were obtained from assays carried out with and without metabolic activation, which is an argument for the presence of promutagens and direct mutagens. The YG1041 strain proved to be the most effective in detection of mutagenicity of the suspended dust extracts because of its notably high sensitivity to nitro-aromatic compounds. The SOS chromotest was very sensitive to a large spectrum of genotoxic air pollutants and showed a high degree of similarity with the results of the Salmonella assay. In comparison with the frequently used Ames test, the SOS chromotest enables quick analysis of the genotoxic effects of samples using only one tester strain. In addition, its miniaturized design decreases the consumption of tested samples.  相似文献   

12.
AT Lemos  MV Coronas  JA Rocha  VM Vargas 《Chemosphere》2012,89(9):1126-1134
Organisms in the environment are exposed to a mixture of pollutants. Therefore the purpose of this study was to analyze the mutagenicity of organic and inorganic responses in two fractions of particulates (TSP and PM2.5) and extracts (organic and aqueous). The mutagenicity of organic and aqueous particulate matter extracts from urban-industrial and urban-residential areas was evaluated by Salmonella/microsome assay, through the microsuspension method, using strain TA98 with and without liver metabolization. Additionally, strains YG1021 and YG1024 (nitro-sensitive) were used for organic extracts. Aqueous extracts presented negative responses for mutagenesis and cytotoxicity was detected in 50% of the samples. In these extracts the presence of potential bioavailable metals was identified. All organic extracts presented mutagens with a higher potential associated with PM2.5. This study presents a first characterization of PM2.5 in Brazil, through the Salmonella/microsome assay. The evaluation strategy detected the anthropic influence of groups of compounds characteristically found in urban and industrial areas, even in samples with PM values in accordance with quality standards. Thus, the use of a genotoxic approach in areas under different anthropic influences will favor the adoption of preventive measures in the health/environment relation.  相似文献   

13.
An investigation of biodegradation of chlorinated phenol in an anaerobic/aerobic bioprocess environment was made. The reactor configuration used consisted of linked anaerobic and aerobic reactors, which served as a model for a proposed bioremediation strategy. The proposed strategy was studied in two reactors before linkage. In the anaerobic compartment, the transformation of the model contaminant, 2,4,6-trichlorophenol (2,4,6-TCP), to lesser-chlorinated metabolites was shown to occur during reductive dechlorination under sulfate-reducing conditions. The consortium was also shown to desorb and mobilize 2,4,6-TCP in soils. This was followed, in the aerobic compartment, by biodegradation of the pollutant and metabolites, 2,4-dichlorophenol, 4-chlorophenol, and phenol, by immobilized white-rot fungi. The integrated process achieved elimination of the compound by more than 99% through fungal degradation of metabolites produced in the dechlorination stage. pH correction to the anaerobic reactor was found to be necessary because acidic effluent from the fungal reactor inhibited sulfate reduction and dechlorination.  相似文献   

14.
硝基苯类化合物生物降解菌的筛选及性能研究,是制药、染料等行业废水达标的重要基础。以浓度梯度升高法筛选到一株硝基苯厌氧降解菌Klebsiella oxytoca NBA-1。考察了该菌对氧气的需求,以及在厌氧条件下,温度、pH值、外加葡萄糖及硝基苯初始浓度等环境因子对菌株降解硝基苯能力的影响,并进一步讨论菌株对氯取代硝基苯类化合物的降解情况。结果表明,该菌在厌氧条件下生长比好氧条件下慢,但降解速度更快;厌氧降解硝基苯的最佳pH值和温度和分别为8.3和30~35℃;加入0.3%~0.5%的葡萄糖可促进降解,且对300mg/L以下的硝基苯均有降解能力;该菌能将4-氯硝基苯转化为4-氯苯胺,并进一步脱氯为苯胺。研究结果可为硝基苯及含氯硝基苯的处理工艺选择提供相关的参考依据。  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

16.
Lu J  Jin Q  He Y  Wu J 《Chemosphere》2007,69(7):1047-1054
Biodegradation behavior of nonylphenol polyethoxylates (NPEOs) under Fe(III)-reducing conditions was investigated. The study demonstrated that NPEOs could be rapidly biodegraded under Fe(III)-reducing conditions. Almost 60% of the total NPEOs were removed within three days and the maximum biodegradation rate was 34.95+/-0.84 microM d(-1). NPEOs were degraded via sequential removal of ether units under Fe(III)-reducing conditions. No nonylphenol polyethoxy-carboxylates (NPECs) were formed in this process. This ether removal process was coupled to Fe(III) reduction. Nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) slightly accumulated in the anaerobic biodegradation process. The accumulation of these estrogenic metabolites led to a significant increase in the estrogenic activity during the biodegradation period. The calculated estrogenic activity reached its top on day 14 when the total concentration of these estrogenic metabolites was maximal. This is the first report of the primary biodegradation behavior of NPEOs under Fe(III)-reducing conditions. These findings are of major environmental importance in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

17.
In the routine São Paulo state (Brazil) surface water quality-monitoring program, which includes the Salmonella microsome mutagenicity assay as one of its parameters, a river where water is taken and treated for drinking water purposes has repeatedly shown mutagenic activity. A textile dyeing facility employing azo-type dyes was the only identifiable source of mutagenic compounds. We extracted the river and drinking water samples with XAD4 at neutral and acidic pH and with blue rayon, which selectively adsorbs polycyclic compounds. We tested the industrial effluent, raw, and treated water and sediment samples with YG1041 and YG1042 and compared the results with the TA98 and TA100 strains. The elevated mutagenicity detected with YG-strains suggested that nitroaromatics and/or aromatic amines were causing the mutagenicity detected in the samples analyzed. Positive responses for the blue rayon extracts indicated that mutagenic polycyclic compounds were present in the water samples analyzed. The mutagen or mixture of mutagens present in the effluent and water samples cause mainly frameshift mutations and are positive with and without metabolic activation. The Salmonella assay combined with different extraction procedures proved to be very useful in the identification of the origin of the pollution and in the identification of the classes of chemical compounds causing the mutagenic activity in the river analyzed.  相似文献   

18.
Ishii S  Hisamatsu Y  Inazu K  Kobayashi T  Aika K 《Chemosphere》2000,41(11):1809-1819
In order to clarify the contribution of nitrated products to the direct-mutagenic activity of products of the reactions of benzo[a]pyrene in NO2-air under various conditions, heterogeneous reactions of BaP deposited on filter in the air containing 10 ppm of NO2 have been conducted in dark or under photoirradiation. The reaction products have been analyzed by gas chromatography and mutagenicity of the products fractionated by preparative HPLC was assayed for Salmonella typhimurium strains TA98 and YG1024 in the absence of S9 mix. 3,6-dinitrobenzo[a]pyrene and 1,3-dinitrobenzo[a]pyrene, which are strong direct-acting mutagens, largely contributed to the total direct-acting mutagenicity of the dark reaction products in NO2-air. On the other hand, both the dark reaction in the presence of O3 and the photoreaction in NO2-air resulted in the formation of much smaller amounts of nitrobenzo[a]pyrenes than that observed in the dark reaction in the absence of O3. These results show that the contribution of other direct-acting mutagens to the total direct-acting mutagenicity of the products in these reactions should be considered. Benzo[a]pyrene lactones were identified in a highly mutagenic fraction of the products of the dark reaction in the presence of O3 and photoreaction and a nitrobenzo[a]pyrene lactone was also identified in a highly mutagenic fraction of the dark reaction products in the presence of O3. Nitrated oxygenated benzo[a]pyrene derivatives such as nitrobenzo[a]pyrene lactone were considered to largely contribute to direct-acting mutagenicity of the products of the dark reaction in the presence of O3 and photoreaction.  相似文献   

19.
Phthalic acid esters (PAE) are commonly found in the sludge generated in the wastewater treatment plants. Anaerobic digestion followed by land application is a common treatment and disposal practice of sludge. To date, many studies exist on the anaerobic biodegradation rates of PAE, especially of the easily biodegradable ones, whereas the higher molecular weight PAE have reported to be non-biodegradable under methanogenic conditions. Furthermore, there is no information on the effect of the PAE on the performance of the anaerobic digesters treating sludge. In this study, the anaerobic biodegradation of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP and DEHP as model compounds of one biodegradable and one recalcitrant PAE respectively. The degradation of all the PAE tested in this study (DEP, DBP and DEHP) is adequately described by first-order kinetics. Batch and continuous experiments showed that DEP and DBP present in sludge are rapidly degraded under mesophilic anaerobic conditions (a first-order kinetic constant of 8.04 x 10(-2) and 13.69 x 10(-2)-4.35 day(-1) respectively) while DEHP is degraded at a rate between one to two orders of magnitude lower (0.35 x 10(-2)-3.59 x 10(-2) day(-1)). It is of high significance that experiments with anaerobic sludge of different origin (US and Europe) showed that degradation of DEHP occurs under methanogenic conditions. Accumulation of high levels of DEHP (more than 60 mg/l) in the anaerobic digester has a negative effect on DBP and DEHP removal rates as well as on the biogas production.  相似文献   

20.
Biodegradability and ecotoxicity of amine oxide based surfactants   总被引:1,自引:0,他引:1  
García MT  Campos E  Ribosa I 《Chemosphere》2007,69(10):1574-1578
The aerobic and anaerobic biodegradability as well as the aquatic toxicity of two fatty amine oxides and one fatty amido amine oxide were investigated. Aerobic biodegradation was evaluated using the CO(2) headspace test (ISO 14593) and biodegradation under anaerobic conditions was assessed employing a standardised batch test. The three amine oxide based surfactants tested were readily biodegradable under aerobic conditions but only the alkyl amido amine oxide was found to be easily biodegradable under anaerobic conditions. Toxicity to Photobacterium phosphoreum and Daphnia magna was evaluated. Bacteria (EC(50) from 0.11 to 11 mg l(-1)) proved to be more sensitive to the toxic effects of the amine oxide based surfactants than crustacea (IC(50) from 6.8 to 45 mg l(-1)). The fatty amido amine oxide showed the lowest aquatic toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号