首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A new method was developed to assess the effect of matrix diffusion on contaminant transport and remediation of groundwater in fractured rock. This method utilizes monitoring wells constructed of open boreholes in the fractured rock to conduct backward diffusion experiments on chlorinated volatile organic compounds (CVOCs) in groundwater. The experiments are performed on relatively unfractured zones (called test zones) of the open boreholes over short intervals (approximately 1 meter) by physical isolation using straddle packers. The test zones were identified with a combination of borehole geophysical logging and chemical profiling of CVOCs with passive samplers in the open boreholes. To confirm the test zones are within inactive flow zones, they are subjected to a series of hydraulic tests. Afterward, the test zones are air sparged with argon to volatilize the CVOCs from aqueous to air phase. Backward diffusion is then measured by periodic passive‐sampling of water in the test zone to identify rebound. The passive (nonhydraulically stressed) sampling negates the need to extract water and potentially dewater the test zone. The authors also monitor active flowing zones of the borehole to assess trends in concentrations in other parts of the fractured rock by purge and passive sampling methods. The testing was performed at the former Pease Air Force Base (PAFB) in Portsmouth, New Hampshire. Bedrock at the former PAFB consists of fractured metasedimentary rocks where the authors investigated back diffusion of cis‐1,2‐dichloroethylene (cis‐1,2‐DCE), a CVOC. Postsparging concentrations of cis‐1,2‐DCE showed initial rebounding followed by declines, excluding an episodic spike in concentrations from a groundwater recharge event. The authors theorize that there are three processes that controlled concentration responses in the test zones postsparging. First, the limited back diffusion of CVOCs from a halo or thin zone of rock around the borehole contributes to the initial rebounding. Second, aerobic degradation of cis‐1,2‐DCE occurred causing declines in concentrations in the test zone. Third, microflow from microfractures contributed to the episodic spike in concentrations following the groundwater recharge event. In active flow zones, the latter two processes are not measurable due to equilibration from groundwater transport between the borehole and active flowing fractures.  相似文献   

2.
A new in situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes a horizontal well filled with reactive media to passively treat contaminated groundwater in situ. The approach involves the use of a large‐diameter directionally drilled horizontal well filled with solid reactive media installed parallel to the direction of groundwater flow. The engineered contrast in hydraulic conductivity between the high in‐well reactive media and the ambient aquifer hydraulic conductivity results in the passive capture, treatment, and discharge back to the aquifer of proportionally large volumes of groundwater. Capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and reductions in downgradient concentrations and contaminant mass flux are nearly immediate. Many different types of solid‐phase reactive treatment media are already available (zero valent iron, granular activated carbon, biodegradable particulate organic matter, slow‐release oxidants, ion exchange resins, zeolite, apatite, etc.). Therefore, this concept could be used to address a wide range of contaminants. Laboratory and pilot‐scale test results and numerical flow and transport model simulations are presented that validate the concept. The HRX Well can access contaminants not accessible by conventional vertical drilling and requires no aboveground treatment or footprint and requires limited ongoing maintenance. A focused feasibility evaluation and alternatives analysis highlights the potential cost and sustainability advantages of the HRX Well compared to groundwater extraction and treatment systems or funnel and gate permeable reactive barrier technologies for long‐term plume treatment. This paper also presents considerations for design and implementation for a planned upcoming field installation.  相似文献   

3.
The establishment of soil cleanup levels is a primary concern in site remediation projects. Soil cleanup levels provide targets that drive the remediation process from technology selection through closure. Several state regulatory agencies are currently in the process of developing scientifically based soil cleanup standards. The underlying premise in the derivation of such standards is to ensure that the site will not pose a threat to human health and the environment after remediation has been completed. To accomplish this, remediation project managers must consider several contaminant transport pathways. This article presents the salient features of a model named IMPACT, which was developed to assist in the derivation of soil cleanup levels. IMPACT considers the soil-to-groundwater pathway and predicts the cleanup levels in a contaminated soil layer in the vadose zone such that groundwater quality standards are met at any point in the aquifer.  相似文献   

4.
This study demonstrates a remedial approach for completing the remediation of an aquifer contaminated with 1,1,2‐trichlorotrifluoroethane (Freon‐113) and 1,1,1‐trichloroethane (TCA). In 1987, approximately 13,000 pounds of Freon‐113 were spilled from a tank at an industrial facility located in the state of New York. The groundwater remediation program consisted of an extraction system coupled with airstripping followed by natural attenuation of residual contaminants. In the first phase, five recovery wells and an airstripping tower were operational from April 1993 to August 1999. During this time period over 10,000 pounds of CFC‐13 and 200 pounds of TCA were removed from the groundwater and the contaminant concentrations decreased by several orders of magnitude. However, the efficiency of the remediation system to recover residual Freon and/or TCA reduced significantly. This was evidenced by: (1) low levels (< 10 ppb) of Freon and TCA captured in the extraction wells and (2) a slight increase of Freon and/or TCA in off‐site monitoring wells. A detailed study was conducted to evaluate the alternative for the second‐phase remediation. Results of a two‐year groundwater monitoring program indicated the contaminant plume to be stable with no significant increase or decrease in contaminant concentrations. Monitored geochemical parameters suggest that biodegradation does not influence the fate and transport of these contaminants, but other mechanisms of natural attenuation (primarily sorption and dilution) appear to control the fate and transport of these contaminants. The contaminants appear to be bound to the soil matrix (silty and clay units) with limited desorption as indicated by the solid phase analyses of contaminant concentrations. Results of fate and transport modeling indicated that contaminant concentrations would not exceed the action levels in the wells that showed a slight increase in contaminant concentrations and in the downgradient wells (sentinel) during the modeled timeframe of 30 years. This feasibility study for natural attenuation led to the termination of the extraction system and a transaction of the property, resulting in a significant financial benefit for the original site owner. © 2003 Wiley Periodicals, Inc.  相似文献   

5.
Detailed field investigations and numerical modeling were conducted to evaluate transport and fate of chlorinated solvent contamination in a fractured sedimentary bedrock aquifer (sandstone/siltstone/mudstone) at a Superfund site in central New Jersey. Field investigations provided information on the fractured rock system hydrogeology, including hydraulic gradients, bulk hydraulic conductivity, fracture network, and rock matrix, and on depth discrete contaminant distribution in fractures (via groundwater sampling) and matrix (via detailed subsampling of continuous cores). The numerical modeling endeavor involved application of both an equivalent porous media (EPM) model for flow and a discrete fracture network (DFN) model for transport. This combination of complementary models, informed by appropriate field data, allowed a quantitative representation of the conceptual site model (CSM) to assess relative importance of various processes, and to examine efficacy of remedial alternatives. Modeling progressed in two stages: first a large‐scale (20 km x 25 km domain) 3‐D EPM flow model (MODFLOW) was used to evaluate the bulk groundwater flow system and contaminant transport pathways under historic and current aquifer stress conditions and current stresses. Then, results of the flow model informed a 2‐D DFN transport model (FRACTRAN) to evaluate transport along a 1,000‐m flowpath from the source represented as a 2‐D vertical cross‐section. The combined model results were used to interpret and estimate the current and potential future extent of rock matrix and aqueous‐phase contaminant conditions and evaluate remedial strategies. Results of this study show strong effects of matrix diffusion and other processes on attenuating the plume such that future impacts on downgradient well fields under the hydraulic stresses modeled should be negligible. Results also showed futility of source remediation efforts in the fractured rock, and supported a technical impracticability (TI) waiver for the site. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Simulation of back‐diffusion remediation timeframe for thin silt/clay layers, or when contaminant degradation is occurring, typically requires the use of a numerical model. Given the centimeter‐scale vertical grid spacing required to represent diffusion‐dominated transport, simulation of back‐diffusion in a 3‐D model may be computationally prohibitive. Use of a local 1‐D model domain approach for simulating back‐diffusion is demonstrated to have advantages but is limited to only some applications. Incorporation of a local domain approach for simulating back‐diffusion in a new model, In Situ Remediation‐MT3DMS (ISR‐MT3DMS) is validated based on a benchmark with MT3DMS and comparisons with a highly discretized finite difference numerical model. The approach used to estimate the vertical hydrodynamic dispersion coefficient is shown to have a significant influence on the simulated flux into and out of silt/clay layers in early time periods. Previously documented back‐diffusion at a Florida site is modeled for the purpose of evaluating the sensitivity of the back‐diffusion controlled remediation timeframe to various site characteristics. A base case simulation with a clay lens having a thickness of 0.2 m and a length of 100 m indicates that even after 99.96 percent aqueous TCE removal from the clay lens, the down‐gradient concentrations still exceed the MCL in groundwater monitoring wells. This shows that partial mass reduction from a NAPL source zone via in situ treatment may have little benefit for the long‐term management of contaminated sites, given that back‐diffusion will sustain a groundwater plume for a long period of time. Back‐diffusion model input parameters that have the greatest influence on remediation timeframe and thus may warrant more attention during field investigations, include the thickness of silt/clay lenses, retardation coefficient representing sorbed mass in silt/clay, and the groundwater velocity in adjacent higher permeability zones. Therefore, pump‐and‐treat systems implemented for the purpose of providing containment may have an additional benefit of reducing back‐diffusion remediation timeframe due to enhanced transverse advective fluxes at the sand/clay interface. Remediation timeframes are also moderately sensitive to the length of the silt/clay layers and transverse vertical dispersivity, but are less sensitive to degradation rates within silt/clay, contaminant solubility, contact time, tortuosity coefficient, and monitoring well‐screen length for the scenarios examined. ©2015 Wiley Periodicals, Inc.  相似文献   

7.
Subgrade biogeochemical reactors (SBGRs) are an in situ remediation technology shown to be effective in treating contaminant source areas and groundwater hot spots, while being sustainable and economical. This technology has been applied for over a decade to treat chlorinated volatile organic compound source areas where groundwater is shallow (e.g., less than approximately 30 feet below ground surface [ft bgs]). However, this article provides three case studies describing innovative SBGR configurations recently developed and tested that are outside of this norm, which enable use of this technology under more challenging site conditions or for treatment of alternative contaminant classes. The first SBGR case study addresses a site with groundwater deeper than 30 ft bgs and limited space for construction, where an SBGR column configuration reduced the maximum trichloroethene (TCE) groundwater concentration from 9,900 micrograms per liter (μg/L) to <1 μg/L (nondetect) within approximately 15 months. The second SBGR is a recirculating trench configuration that is supporting remediation of a 5.7‐acre TCE plume, which has significant surface footprint constraints due to the presence of endangered species habitat. The third SBGR was constructed with a new amendment mixture and reduced groundwater contaminant concentrations in a petroleum hydrocarbon source area by over 97% within approximately 1 year. Additionally, a summary is provided for new SBGR configurations that are planned for treatment of additional classes of contaminants (e.g., hexavalent chromium, 1,4‐dioxane, dissolved explosives constituents, etc.). A discussion is also provided describing research being conducted to further understand and optimize treatment mechanisms within SBGRs, including a recently developed sampling approach called the aquifer matrix probe.  相似文献   

8.
An in situ bioremediation (ISB) pilot study, using whey powder as an electron donor, is being performed at Site 19, Edwards Air Force Base, California, to treat groundwater contaminated with trichloroethene (TCE) via anaerobic reductive dechlorination. Challenging site features include a fractured granitic aquifer, complex geochemistry, and limited biological capacity for reductive dechlorination. ISB was conducted in two phases with Phase I including one‐and‐a‐half years of biostimulation only using whey powder and Phase II including biostimulation with buffered whey powder and bioaugmentation. Results of Phase I demonstrated effective distribution of whey during injections resulting in depletion of high concentrations of sulfate and methanogenesis, but acid production due to whey fermentation and limited buffering capacity of the aquifer resulted in undesirable impacts to pH. In addition, cis‐1,2‐dichloroethene (cis‐1,2‐DCE) stall was observed, which correlated to the unsuccessful growth of native Dehalococcoides populations. Therefore, Phase II included the successful buffering of whey powder using bicarbonate, which mitigated negative pH effects. In addition, bioaugmentation resulted in successful transport of Dehalococcoides populations to greater than 50 feet away from the injection point four months after inoculation. A concomitant depletion of accumulated cis‐1,2‐DCE was observed at all wells affected by bioaugmented Dehalococcoides. © 2008 Wiley Periodicals, Inc.  相似文献   

9.
When used in combination with source management strategies, monitored natural attenuation (MNA) is likely to be a technically feasible remediation option if the contaminant persistence time along the flow path is less than (a) the transport time to the compliance point and (b) the time available for groundwater remediation objectives to be achieved. Biodegradation is often the most significant natural attenuation process for benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater. While BTEX transport rates increase with groundwater velocity, examination of data obtained from the published literature for seven sites undergoing MNA revealed significant positive correlations between groundwater velocity and first‐order biodegradation rates for toluene (r = 0.83, P < 0.05), ethylbenzene (r = 0.93, P < 0.01), m‐ and p‐xylene (r = 0.96, P < 0.01), and o‐xylene (r = 0.78, P < 0.05). This is attributed to increased dispersion at higher velocities leading to more mixing of electron acceptors with the contaminant plume. There was no positive correlation between groundwater velocity and first‐order biodegradation rates for benzene due to noise in the relationship caused by variations in (a) the concentrations of electron acceptors in the uncontaminated groundwater and (b) the proportions of benzene in the total BTEX concentration in the source area. A regression model of the relationship between groundwater velocity and the first‐order biodegradation rate can be used to delineate operating windows for groundwater velocity within which the contaminant persistence time is less than the transport and remediation times for a given source concentration, target concentration, distance to compliance point, retardation factor, and remediation time. The operating windows can provide decision makers with a rapid indication of whether MNA is likely to be a technically feasible remediation option at a given site. © 2005 Wiley Periodicals, Inc.  相似文献   

10.
Over the past 10 years, there has been an increased recognition that matrix diffusion processes are a significant factor controlling the success of groundwater remediation. New field techniques and modeling tools have, consequently, been developed to understand how contaminants diffuse into and then out of low‐permeability (“low‐k”) zones and assess the resulting impact on groundwater quality. Matrix diffusion, in turn, is driven by one key factor: geologic heterogeneity. The importance of heterogeneity is being emphasized in the groundwater field by general rules of thumb such as “90% of the mass flux occurs in 10%‐20% of the cross‐sectional area” and conceptual models that show most of the groundwater flow occurs through the aquifer's “mobile porosity” which just a small fraction of commonly used effective porosity values (between 0.02 and 0.10 for mobile porosity vs. 0.25 for effective porosity). For this study, 141 boring logs from 43 groundwater remediation sites were evaluated to develop an empirically based estimate of the groundwater flow versus aquifer cross‐sectional area to confirm or reject the general flow versus area rules of thumb. This study indicated that at these 43 sites, an average of 30% of the cross‐sectional area carried 90% of the groundwater flow. Our flow‐only analysis does provide moderate (but not confirmatory) support for the “mobile porosity” concept with an estimated representative mobile porosity value of about 0.11 at the 43 sites.  相似文献   

11.
The East Gate Disposal Yard (EGDY) at Fort Lewis is the source of a large trichloroethene (TCE) plume at this military installation. Source reduction using thermal treatment was applied using electrical resistance heating. A total of about 5,800 kg of TCE‐equivalent volatile organic compounds (VOCs; TCE and dichloroethene) was extracted during thermal treatment of the three zones selected for source reduction. Pretreatment groundwater TCE concentrations were measured up to 100 ppm. Posttreatment groundwater TCE concentrations within the treatment zones averaged less than 100 ppb. Posttreatment soil TCE concentrations decreased by over 96 percent compared to pretreatment soil concentrations. The overall contaminant flux from EGDY was reduced by an estimated 60 to 90 percent by the source reduction effort. The traditional and new techniques for site characterization and remediation performance monitoring applied at EGDY provide insight for installing, operating, monitoring, and assessing thermal treatment. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Numerical models were used to simulate alternative funnel‐and‐gate groundwater remediation structures near property corners in hypothetical homogeneous and heterogeneous unconfined aquifers. Each structure comprised a highly permeable central gate (hydraulic conductivity = 25 m/d) and soil‐bentonite slurry walls (hydraulic conductivity = 0.00009 m/d). Gates were perpendicular to regional groundwater flow and approximately 5 m from a contaminant plume's leading tip. Funnel segments collinear to the central gate reached property boundaries; additional funnel segments followed property boundaries in the most hydraulically upgradient direction. Structures were 1 m thick and anchored into the base of the aquifer. Two structures were simulated for each aquifer: one with a 3.0‐m‐long central gate and funnels on either side; and a second with a 1.5‐m‐long central gate, funnels on either side, and 0.75‐m‐long end gates. Funnels were lengthened in successive simulations, until a structure contained a contaminant plume. Results suggest that, for the same total gate length, one‐gate structures may facilitate more rapid remediation, up to 44 percent less time in trials conducted in this study, than multiple‐gate structures constructed near property corners. However, in order to effectively contain a plume, one‐gate structures were up to 46 percent larger than multiple‐gate structures. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Smoldering combustion, commercially available as the Self‐sustaining Treatment for Active Remediation (STAR) technology, is an innovative technique that has shown promise for the remediation of contaminant source zones. Smoldering combustion is an exothermic reaction (net energy producing) converting carbon compounds and an oxidant (e.g., oxygen in air) to carbon dioxide, water, and energy. Thus, following ignition, the smoldering combustion reaction can continue in a self‐sustaining manner (i.e., no external energy or added fuel input following ignition) as the heat generated by the reacting contaminants is used to preheat and initiate combustion of contaminants in adjacent areas, propagating a combustion front through the contaminated zone provided a sufficient flux of air is supplied. The STAR technology has applicability across a wide‐range of hydrocarbons in a variety of hydrogeologic settings; however, there are limitations to its use. Impacted soils must be permeable enough to allow a sufficient flux of air to the combustion front and there exists a minimum required concentration of contaminants such that the soils contain sufficient fuel for the reaction to proceed in a self‐sustaining manner. Further limitations, as well as lessons learned and methods to mitigate these limitations, are presented through a series of case studies. In summary, the successful implementation of STAR will result in >99 percent reduction in contaminant concentrations in treated areas, limited residual contaminant mass, reduced groundwater contaminant mass flux which can be addressed through monitored natural attenuation; and an enhanced site exit strategy, reduced lifecycle costs, and reduced risk. ©2016 Wiley Periodicals, Inc.  相似文献   

14.
The U.S. Department of Energy has generated liquid wastes containing radioactive and hazardous chemicals throughout the more than forty years of operation at its Hanford site in Washington State. Many of the waste components, including nitrate and carbon tetrachloride (CCl4), have been detected in the Hanford groundwater. In-situ bioremediation of CCl4 and nitrate is being considered to clean the aquifer. Preliminary estimates indicate that this technology should cost significantly less than ex-situ bioremediation and about the same as air stripping/granular activated carbon. In-situ bioremediation has the advantage of providing ultimate destruction of the contaminant and requires significantly less remediation time. Currently, a test site is under development. A computer-aided design tool is being used to design optimal remediation conditions by linking subsurface transport predictions, site characterization data, and microbial growth and contaminant destruction kinetics.  相似文献   

15.
A sulfuric acid leak in 1988 at a chloroethene‐contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long‐term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's‐based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30‐m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides‐type bacteria within the sulfuric acid/chloroethene co‐contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C‐TCE and 14C‐VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co‐contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's‐based source area treatment) do not necessarily preclude efficient chloroethene degradation. © 2007 Wiley Periodicals, Inc.  相似文献   

16.
A three‐dimensional stochastic groundwater flow and contaminant transport model has been developed to optimize groundwater containment at an industrial site in Italy and to define likely future contaminant distribution under different confinement or remediation scenarios. The transport model was first calibrated using a deterministic approach to simulate the hydrochemical conditions prior to the optimization of groundwater extraction, then a probabilistic simulation was conducted to predict future contaminant concentrations. The stochastic approach allowed introducing an estimate of the uncertainty of the hydrogeological and chemical parameters into the model, simulating the probability density function of the contaminant concentrations after the application of the optimized barrier wells pumping rates. This allowed the calculation of the time required for the concentrations of each modeled parameter to decrease to under the regulatory limit at the compliance point, and associating the related uncertainty into the model. Quantifying the model prediction uncertainty facilitated a better understanding of the site environmental conditions, providing the site owners additional information for managing the site and allocating related economic resources. ©2016 Wiley Periodicals, Inc.  相似文献   

17.
The Air Force Center for Engineering and the Environment (AFCEE) is performing Environmental Restoration Program Optimization (E‐RPO) at various United States Air Force (USAF) installations to evaluate existing remediation strategies and recommend actions to advance issues impacting the remediation program. As sustainability practices (including green and sustainable remediation [GSR]) increase at Air Force facilities and throughout the environmental industry, the use of alternative energy‐collection sources (i.e., solar photovoltaics [PV] and wind turbines) is likely to increase dramatically. Although PV and wind power systems exhibit a low environmental footprint during their use, there are potential human health and environmental impacts from the manufacturing and recycling processes. This article presents a summary of available information regarding the environmental impacts associated with life‐cycle assessments that include raw material extraction and refinement, product manufacturing, use, and postuse disposal for PV and wind turbines (i.e., cradle‐to‐grave impacts). © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Understanding and ultimately simulating the contaminant transport processes occurring in, or around, micropore zones is a topic that will help further the advancement of efficient design and implementation of future remediation techniques. This paper proposes a method to forecast effects of micropores on contaminant transport using a new conceptual method that is based on a model that comprises three zones, namely mobile, immobile, and micropore zones and has two different porosity zones. The model is successfully tested against other established methods (van Genuchten and Wierenga, 1976) and experimental data (Brusseau, 1993).  相似文献   

19.
The objective of this study was to evaluate the capability of partially penetrating (hanging) funnel‐and‐gate structures, designed using reverse flow trajectories, for capturing plumes of contaminated groundwater. Linear capture structures, comprised of two slurry cutoff walls on either side of a permeable gate, were positioned perpendicular to regional groundwater flow in a hypothetical unconfined aquifer. A four‐step approach was used for each of two simulated settings: (1) a numerical mass transport model generated a contaminant plume originating from a source area; (2) a particle‐tracking model projected groundwater flow paths upstream from a treatment gate; (3) the structure was widened and deepened until bounding path lines contained the plume; and (4) mass transport simulation tested the ability of the structure to capture the plume. Results of this study suggest that designing funnel‐and‐gate structures using reverse particle tracking may result in too small a structure to capture a contaminant plume. This practice generally ignores effects of hydrodynamic dispersion, which may enlarge plumes such that contaminants move beneath or around a capture structure. This bypassing effect may be considerable even for low values of dispersivity. Particle‐tracking approaches may also underestimate the amount of time required to reduce contaminant concentrations to acceptable levels. © 2007 Wiley Periodicals, Inc.  相似文献   

20.
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska, has developed a freeze barrier system designed to hydraulically isolate a contaminant source area. The system can be used for long‐term or temporary containment of groundwater until appropriate remediation techniques can be applied. The technology was evaluated under the United States Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) program at the United States Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) facility in Oak Ridge, Tennessee. For the demonstration, an array of freeze pipes called “thermoprobes” was installed to a depth of 30 feet below ground surface around a former waste collection pond and keyed into bedrock. The system was used to establish an impermeable frozen soil barrier to hydraulically isolate the pond. Demonstration personnel collected independent data to evaluate the technology's performance. A variety of evaluation tools were used—including a groundwater dye tracing investigation, groundwater elevation measurements, and subsurface soil temperature data—to determine the effectiveness of the freeze barrier system in preventing horizontal groundwater flow beyond the limits of the frozen soil barrier. Data collected during the demonstration provided evidence that the frozen soil barrier was effective in hydraulically isolating the pond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号