首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Understanding P sorption from animal manures is essential to formulate best management practices with regard to land application of manure from the standpoint of crop production and environmental quality. Little research has focused on the construction of P sorption isotherms where the P source is manure. The objectives of this study were to: (i) develop a procedure to characterize how inorganic P (P(i)) and total P (P(t)) from dairy slurry and swine slurry sorbs to soil; and (ii) compare the sorption characteristics of P(i) and P(t) where the P source was dairy slurry, swine slurry, or potassium phosphate (KH2PO4). Sorption solutions were prepared in 0.1 M KCl at pH 6 and equilibrated with soils at a 1:25 (w/v) soil/solution ratio for 24 h. Inorganic P, P(t), Al, and Fe in the equilibrated solutions were measured. For all soils, P(i) and P(t) sorption capacity of dairy slurry was greater than KH2PO4. Total P sorption capacity of swine slurry was greater than KH2PO4, while P(i) sorption capacity was less than KH2PO4. Overall, P(i) and P(t) sorption strengths of the manure slurries were less than or equal to KH2PO4. Increased P(i) sorption from dairy slurry was correlated with Fe and Al desorption. Reduction of P(i) sorption capacity from swine slurry was related to preferential sorption of organic P. Additional studies need to be conducted to determine how differences in P sorption between manures and fertilizer impact in-field P availability to a crop and potential for losses in runoff water.  相似文献   

2.
Managing fertilizer applications to maintain soil P below environmentally unacceptable levels should consider the contribution of manure and synthetic fertilizer sources to soluble and extractable forms of P. Our objective was to evaluate soil and manure characteristics and application rates on P extractability in recently amended soils. Five soils of the U.S. southern High Plains were amended with beef cattle manures, composted beef manure, and inorganic fertilizers [Ca(H(2)PO(4))(2) or KH(2)PO(4)] at five rates and incubated under controlled conditions. Mehlich 3-, Olsen (NaHCO(3))-, Texas A&M extractant (TAM)-, and water-extractable P were determined for the soils after selected incubation periods. Except for TAM and some water extractions, P extractability as a function of total P applied was linear (P < 0.001) for a wide range of application rates. Mehlich-3, NaHCO(3), and water P extraction efficiencies of KH(2)PO(4)-amended soils averaged 22, 34, and 115% greater (P < or = 0.036), respectively, than efficiencies of soils amended with manures except for the Texline (calcareous) loam and Pullman clay loam soils. Phosphorus extraction efficiencies decreased with time for KH(2)PO(4)-amended soils (P < 0.05) but remained stable or increased for manure-amended soils during the 8-wk incubation period. Across all soils and manure sources, changes in water-extractable P per unit increase in Mehlich 3-, NaHCO(3)-, and TAM-extractable P averaged 100, 85, and 125% greater, respectively, for inorganic as compared with manure-amended soils. These source-dependent relationships limit the use of agronomic soil extractants to make correct inferences about water-extractable P and dissolved P in runoff.  相似文献   

3.
Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH)2 for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH)2 at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793,000 to 6500 mL-1. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.  相似文献   

4.
Two environmental aspects associated with land application of poultry litter that have not been comprehensively evaluated are (i) the competition of dissolved organic matter (DOM) and P for soil sorption sites, and (ii) the sorption of dissolved organic nitrogen (DON) relative to inorganic nitrogen species (e.g., NO(3)(-) and NH(4)(+)) and dissolved organic carbon (DOC). The competition between DOM and P for sorption sites has often been assumed to increase the amount of P available for plant growth; however, elevating DOM concentrations may also increase P available for transport to water resources. Batch sorption experiments were conducted to (i) evaluate soil properties governing P sorption to benchmark soils of Southwestern Missouri, (ii) elucidate the impact of poultry litter-derived DOM on P sorption, and (iii) investigate DON retention relative to inorganic N species and DOC. Soils were reacted for 24 h with inorganic P (0-60 mg L(-1)) in the presence and absence of DOM (145 mg C L(-1)) using a background electrolyte solution comparable to DOM extracts (I = 10.8 mmol L(-1); pH 7.7). Soil P sorption was positively correlated with metal oxide (r(2) = 0.70) and clay content (r(2) = 0.79) and negatively correlated with Bray-1 extractable P (r(2) = 0.79). Poultry litter-derived DOM had no significant negative impact on P sorption. Dissolved organic nitrogen was preferentially removed from solution relative to (NO(3)(-)-N + NO(2)(-)-N), NH(4)(+)-N, and DOC. This research indicates that poultry litter-derived DOM is not likely to enhance inorganic P transport which contradicts the assumption that DOM released from organic wastes increases plant-available P when organic amendments and fertilizer P are co-applied. Additionally, this work demonstrates the need to further evaluate the fate and transport of DON in agroecosystem soils receiving poultry litter applications.  相似文献   

5.
Effect of mineral and manure phosphorus sources on runoff phosphorus   总被引:3,自引:0,他引:3  
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.  相似文献   

6.
Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.  相似文献   

7.
Long-term application of phosphorus (P) with animal manure in amounts exceeding removal with crops leads to buildup of P in soil and to increasing risk of P loss to surface water and eutrophication. In most manures, the majority of P is held within inorganic forms, but in soil leachates organic P forms often dominate. We investigated the mobility of both inorganic and organic P in profile samples from a noncalcareous sandy soil treated for 11 yr with excessive amounts of pig slurry, poultry manure, or poultry manure mixed with litter. Solution 31P nuclear magnetic resonance spectroscopy was used to characterize NaOH-EDTA-extractable forms of P, corresponding to 64 to 93% of the total P concentration in soil. Orthophosphate and orthophosphate monoesters were the main P forms detected in the NaOH-EDTA extracts. A strong accumulation of orthophosphate monoesters was found in the upper layers of the manure-treated soils. For orthophosphate, however, increased concentrations were found down to the 40- to 50-cm soil layers, indicating a strong downward movement of this P form. This was ascribed to the strong retention of orthophosphate monoesters by the solid phase of the soil, preventing orthophosphate sorption and facilitating downward movement of orthophosphate. Alternatively, mineralization of organic P in the upper layers of the manure-treated soils may have generated orthophosphate, which could have contributed to the downward movement of the latter. Leaching of inorganic P should thus be considered for the assessment and the future management of the long-term risk of P loss from soils receiving large amounts of manure.  相似文献   

8.
Poultry litter applications to land have been based on crop N requirements, resulting in application of P in excess of plant requirements, which may cause degradation of water quality in the Chesapeake Bay watershed. The effect of litter source (the Delmarva Peninsula and Moorefield, West Virginia) and composting of poultry litter on N mineralization and availability of P in two soil types (sandy loam and silt loam) was determined in a controlled environment for 120 d. Nitrogen mineralization (percent total organic N converted to inorganic nitrogen) rates were higher for fresh litter (range of 42 to 64%) than composted litter (range of 1 to 9%). The N mineralization rate of fresh litter from the Delmarva Peninsula was consistently lower than the fresh litter from Moorefield, WV. The N mineralization rate of composted litter from either source was not significantly different for each soil type (7 to 9% in sandy loam and 1 to 5% in silt loam) even though composting conditions were completely different at the two composting facilities. Litter source had a large effect on N mineralization rates of fresh but not composted poultry litter. Composting yielded a more predictable and reliable source of mineralizable N than fresh litter. Water-extractable phosphorus (WEP) was similar in soils amended with composted litter from WV and fresh litter from both sources (approximately 10 to 25 and 2 to 14 mg P kg(-1) for sandy loam and silt loam, respectively). Mehlich 1-extractable phosphorus (MEP) was similar in soils amended with WV fresh litter and composted litter from both sources (approximately 100 to 140 and 60 to 90 mg P kg(-1) for sandy loam and silt loam, respectively). These results suggest that the composting process did not consistently reduce WEP and MEP, and P can be as available in composted poultry litter as in fresh poultry litter.  相似文献   

9.
Environmental concerns are driving manure management in many areas from a traditional nitrogen (N) basis toward phosphorus (P)-based nutrient management plans. We investigated how changing nutrient management from an N to a P basis affected crop yields and soil properties in high P soils over a 7-yr period. Three sites were established on farmers' fields, and at each site the same six treatments were applied for 6 or 7 yr. These treatments were (i) no P; (ii) poultry litter applied on an N basis; (iii) inorganic P, equal to the P applied in treatment 2; (iv) poultry litter applied on an estimated annual crop P removal basis; (v) inorganic P, equal to the P applied in treatment iv; and (vi) poultry litter applied once every 2 or 3 yr at a 2- or 3-yr crop removal P rate. All treatments received the same rate of plant-available N. Yields, P balance, soil pH, Mehlich 1 P, and water-soluble P (WSP) were monitored during the experiment. Over the course of the experiment, litter had the beneficial effect of raising soil pH relative to the inorganic treatments. After 7 yr, Mehlich 1 P and WSP were greatest in soils under the N-based treatments, smallest in the no P treatment, and intermediate in the P-based treatments. For example, at the Shenandoah site, Mehlich 1 P decreased by 35 mg kg(-1) under the no P treatment and increased by 36 mg kg(-1) under the inorganic N-based treatment. There were no significant differences between inorganic fertilizer and poultry litter nutrient sources. The results of this study show that soil test P can be decreased in high-P soils over a few years by changing from an N-based to a P-based nutrient management plan or stopping P applications without negatively affecting yields.  相似文献   

10.
Poultry litter ash as a potential phosphorus source for agricultural crops   总被引:1,自引:0,他引:1  
Maryland will impose restrictions on poultry litter application to soils with excessive P by the year 2005. Alternative uses for poultry litter are being considered, including burning as a fuel to generate electricity. The resulting ash contains high levels of total P, but the availability for crop uptake has not been reported. Our objective was to compare the effectiveness of poultry litter ash (PLA) and potassium phosphate (KP) as a P source for wheat (Triticum aestivum L.) in acidic soils, without and with limestone application. Two acidic soils (pH 4.25 and 4.48) were studied, unlimed or limed to pH 6.5 before cropping. The PLA and KP were applied at 0, 39, and 78 kg P ha(-1), after which wheat was grown. Limestone significantly increased wheat yield, but the P sources without limestone did not. The two P sources were not significantly different as P fertilizer. At the 78 kg P ha(-1) rate, wheat shoot-P concentrations were 1.10 and 1.12 g kg(-1) for the PLA treatment compared with 0.90 and 0.89 g kg(-1) for KP in the nonlimed and limed soils, respectively. Trace element concentrations in wheat shoots from the PLA treatment were less than or equal to KP and the control. The low levels of water-soluble P and metals in the soils and the low metal concentrations in wheat suggest that PLA is an effective P fertilizer. Further studies are needed to determine the optimum application rate of PLA as a P fertilizer.  相似文献   

11.
Fecal contamination of water resources is evaluated by the enumeration of the fecal coliforms and Enterococci. However, the enumeration of these indicators does not allow us to differentiate between the sources of fecal contamination. Therefore, it is important to use alternative indicators of fecal contamination to identify livestock contamination in surface waters. The concentration of fecal indicators (, enteroccoci, and F-specific bacteriophages), microbiological markers (Rum-2-bac, Pig-2-bac, and ), and chemical fingerprints (sterols and stanols and other chemical compounds analyzed by 3D-fluorescence excitation-matrix spectroscopy) were determined in runoff waters generated by an artificial rainfall simulator. Three replicate plot experiments were conducted with swine slurry and cattle manure at agronomic nitrogen application rates. Low amounts of bacterial indicators (1.9-4.7%) are released in runoff water from swine-slurry-amended soils, whereas greater amounts (1.1-28.3%) of these indicators are released in runoff water from cattle-manure-amended soils. Microbial and chemical markers from animal manure were transferred to runoff water, allowing discrimination between swine and cattle fecal contamination in the environment via runoff after manure spreading. Host-specific bacterial and chemical markers were quantified for the first time in runoff waters samples after the experimental spreading of swine slurry or cattle manure.  相似文献   

12.
Natural and synthetic steroidal hormones can be carried to agricultural soil through fertilization with municipal biosolids, livestock manure, or poultry manure. The persistence and pathways of dissipation of [4-(14)C]-testosterone and of [4-(14)C]-17beta-estradiol in organic-amended soils were investigated using laboratory microcosms. Testosterone dissipation was investigated over a range of amendment concentrations, temperatures, and soil types. Under all conditions the parent compound and transformation products were dissipated within a few days. Addition of swine manure slurry to soil hastened the transformation of testosterone and 17beta-estradiol to the corresponding less hormonally active ketones, 4-androstene-3,17-dione and estrone. Two other testosterone transformation products, 5alpha-androstan-3,17-dione and 1,4-androstadiene-3,17-dione, were also detected. Experiments with sterilized soil and sterilized swine manure slurry suggested that the transformation of (14)C-labeled hormonal parent compounds was mainly caused by microorganisms in manure slurry, while mineralization of the hormones to (14)CO(2) required viable soil microorganisms. Organic amendments transiently inhibited the mineralization of [4-(14)C]-testosterone, perhaps by inhibiting soil microorganisms, or by enhancing sorption and reducing the bioavailability of testosterone or transformation products. Overall, organic amendments influenced the pathways and kinetics of testosterone and estradiol dissipation, but did not increase their persistence.  相似文献   

13.
Environmental impacts of composting poultry litter with chemical amendments at the field scale have not been well quantified. The objectives of this study were to measure (i) P runoff and (ii) forage yield and N uptake from small plots fertilized with composted and fresh poultry litter. Two composting studies, aerated using mechanical turning, were conducted in consecutive years. Composted litter was collected at the completion of each study for use in runoff studies. Treatments in runoff studies included an unfertilized control, fresh (uncomposted) poultry litter, and litter composted with no amendment, H3PO4, alum, or a microbial mixture. An additional treatment, litter composted with alum plus the microbial mixture, was evaluated during the first year. Fertilizer treatments were applied at rates equivalent to 8.96 Mg ha(-1) and rainfall simulators were used to produce a 5 cm h(-1) storm event. Composted poultry litter, regardless of treatment, had higher total P concentrations than fresh poultry litter. Composting poultry litter resulted in reductions of N/P ratios by as much as 51%. Soluble reactive P concentrations were lowest in alum-treated compost, which reduced soluble P concentrations in runoff water by as much as 84%. Forage yields and N uptake were greatest from plots fertilized with fresh poultry litter. Composting poultry litter without the addition of C sources can increase P concentrations in the end product and surface runoff. This study also indicated that increased rates of composted poultry litter would be required to meet equivalent N rates supplied by fresh poultry litter.  相似文献   

14.
The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.  相似文献   

15.
Contamination of freshwater by estrogens from manure applied to agricultural land is of grave concern because of the potentially harmful effects on aquatic life and human health. Recent developments in liquid manure (slurry) management include partial removal of particulate slurry dry matter (PSDM) by separation technologies, which may also remove parts of the estrogens and enhance infiltration of the slurry on field application and hence the interaction between estrogens and the soil matrix. This study investigated how 17β-estradiol (E2), a natural estrogen commonly found in pig manure, sorbs to agricultural soils, to different size fractions of pig slurry separates, and to soils amended with each size fraction to simulate conditions in the soil-slurry environment. A crude fiber fraction (SS1) was prepared by sieving (<500 μm) the solids removed by an on-farm separation process. Three other size fractions (SS2 > SS3 > SS4) were prepared from the liquid fraction of the separated slurry by sedimentation and centrifugation. Sorption experiments were conducted in 0.01 mol L(-1) CaCl(2) and in natural pig urine matrix. Sorption in 0.01 mol L(-1) CaCl(2) was higher than that in pig urine for all solids used. Sorption of E2 to soil increased with its organic carbon content for both liquid phases. The solid-liquid partition coefficients of slurry separates were 10 to 30 times higher than those of soils, but the organoic carbon normalized partition coefficient values, reflecting sorption per unit organic carbon, were lower for slurry separates. Mixing slurry separates with soil increased the sorption of E2 to the solid phase significantly in the order: SS1 < SS3 < SS2 for both liquid phases. In contrast, SS4 reduced the sorption of E2 to the solid phase by increasing the sorption to suspended or dissolved organic matter. The study suggested that potentially 50 to 75% of E2 in slurry can be removed from the liquid fraction of slurry by physical separation.  相似文献   

16.
Metals in soils amended with sewage sludge are typically less available compared with those in soils spiked with soluble metal salts. However, it is unclear if this difference remains in the long term. A survey of copper (Cu) availability was made in soils amended with sewage sludge, manure, and compost, collectively named organic amendments. Paired sets of amended and control soils were collected from 22 field trials where the organic amendments had aged up to 112 yr. Amended soils had higher total Cu concentrations (range, 2-220 mg Cu kg; median, 15 mg Cu kg) and organic C (range, 1-16 g kg; median, 4 g kg) than control soils. All samples were freshly spiked with CuCl, and the toxicity of added Cu to barley was compared between amended and control soils. The toxicity of added Cu was significantly lower in amended soils than in control soil in 15 sets by, on average, a factor of 1.4, suggesting that aged amendments do not largely increase Cu binding sites. The fraction of added Cu that is isotopic exchangeable Cu (labile Cu) was compared between control soils freshly spiked with CuCl and amended soils with both soils at identical total Cu concentrations. Copper derived from amendments was significantly less labile (on average 5.9-fold) than freshly added Cu in 18 sets of soils. This study shows that Cu availability after long-term applications of organic amendments is lower than that of freshly added Cu salts, mainly because of its lower availability in the original matrix and ageing reactions than because of increased metal binding sites in soil.  相似文献   

17.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

18.
Phosphorus (P) losses from agricultural soils have caused surface water quality impairment in many regions of the world, including The Netherlands. Due to the large amounts of P accumulated in Dutch soils, the generic fertilizer and manure policy will not be sufficient to reach in time the surface water quality standards of the European Water Framework Directive. Additional measures must be considered to further reduce P enrichment of surface waters. One option is to immobilize P in soils or manure or to trap P when it moves through the landscape by using reactive materials with a large capacity to retain P. We characterized and tested two byproducts of the process of purification of deep groundwater for drinking water that could be used as reactive materials: iron sludge and iron-coated sand. Both materials contain low amounts of inorganic contaminants, which also have a low (bio)availability, and bound a large amount of P. We could describe sorption of P to the iron sludge in batch experiments well with the kinetic Freundlich equation (Q = × t (m) × C(n)). Kinetics had a large influence on P sorption in batch and column experiments and should be taken into account when iron-containing materials are tested for their capability to immobilize or trap P. A negative aspect of the iron sludge is its low hydraulic conductivity; even when mixed with pure sand to a mixture containing 20% sludge, the conductivity was very low, and only 10% sludge may be needed before application is possible in filters or barriers for removing P from groundwater. Due to its much higher hydraulic conductivity, iron-coated sand has greater potential for use under field conditions. Immobilizing P could be an option for using iron sludge as a reactive material.  相似文献   

19.
Antibiotics may appear in the environment when manure, sewage sludge, and other organic amendments are added to soils. There is concern that the presence of antibiotics in soils may lead to the development of antibiotic-resistant bacteria which may spread to the rest of the environment. This paper aims at evaluating the sorption kinetics of two antibiotics frequently used in pig production. The results indicate that sorption of chlortetracycline (CTC) and tylosin (TYL) in sandy loam and clay occurs very fast. More than 95% of the CTC adsorption is completed within 10 min on both soils and of TYL within 3 h. These results suggest that 24-h soil and antibiotic solution mixtures is enough for sorption studies. Also, there is less likelihood that these antibiotics will leach through soil and appear in the ground water since their sorption on soils is very high unless they are carried by soil particles through preferential flow. There was also no effect of soil sterilization on sorption kinetics of these antibiotics thus suggesting that there is minimal probability of the antibiotics degrading by microorganisms during 24- to 48-h adsorption studies.  相似文献   

20.
The risk of P losses from agricultural land to surface and ground water generally increases as the degree of soil P saturation increases. A single-point soil P sorption index (PSI) was validated with adsorption isotherm data for determination of the P sorption status of Alberta soils. Soil P thresholds (change points) were then examined for two agricultural soils after eight annual applications of different rates of cattle manure and for three agricultural soils after one application of different rates of cattle manure. Linear relationships were found between soil-test P (STP) levels up to 1000 mg kg(-1) and desorbed P in the five Alberta soils. Weak linear relationships were also found between STP and runoff dissolved reactive phosphorus (DRP) in three of these soils. Change points for the degree of P saturation (DPS) were detected in four of the five soils at 3 to 44% for water-extractable P (WEP) and at 11 to 51% for CaCl(2)-extractable P (CaCl(2)-P). Change points were not found for DPS or runoff DRP. Overall DPS thresholds for the five soils combined were 27% for WEP and 44% for CaCl(2)-P at a critical desorbable-P value of 1 mg L(-1). The corresponding STP levels (44 mg kg(-1) for WEP and 71 mg kg(-1) for CaCl(2)-P) are similar to agronomic thresholds for crops grown on Alberta soils. Soluble P losses in overland flow and leaching may be greater in soils with DPS values that exceed these thresholds than in soils with lower DPS values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号