首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The degradation and ecotoxicity of sulfonylurea herbicide rimsulfuron and its major metabolites were examined in batch samples of an alluvial sandy loam and in freshwater. An HPLC-DAD method was adapted to simultaneously identify and quantify rimsulfuron and its metabolites, which was successfully validated by GC-MS analysis. In aqueous solutions, pure rimsulfuron was rapidly hydrolyzed into metabolite 1 (N-(4,6-dimethoxypyrimidin-2-yl)-N-(3-(ethylsulfonyl)-2-pyridinylurea)), which itself was transformed into the more stable metabolite 2 (N-((3-(ethylsulfonyl)-2-pyridinyl)-4,6-dimethoxy-2-pyrimidineamine)), with half-life (t(1/2)) values of 2 and 2.5 days, respectively. Hydrolysis was instantaneous under alkaline conditions (pH = 10). In aqueous suspensions of the alluvial soil (pH = 8), formulated rimsulfuron had a half-life of 7 days, whereas that of metabolite 1 was similar to that in water (about 3.5 days). The degradation of the two major metabolites was also studied in soil suspensions with the pure compounds at concentrations ranging from 1 to 10 mg l(-1). The half-life of metabolite 1 ranged from 3.9 to 5 days, close to the previous values. Metabolite 2 was more persistent and its degradation is strongly dependent on the initial concentration (C0): half-life values ranged from 8.1 to 55 days at 2-10 mg l(-1), respectively. These values are higher than those determined from the kinetics of metabolite 1 transformation into metabolite 2 (t(1/2) = 8-19 days). The ecotoxicity of the three chemicals was evaluated through their effect on Daphnia magna and Vibrio fischeri (Microtox bioassay). No effect was observed on D. magna with 24 and 48 h acute toxicity tests. Similarly, no toxic effect was observed with the Microtox test for the three chemicals in the range of concentrations tested that included the field application dose. Thus, being of low persistence and lacking acute toxicity, these chemicals present a low environmental risk. However, chronic effects should be studied in order to confirm the safety of rimsulfuron and its major metabolites.  相似文献   

2.
Xu N  Christodoulatos C  Braida W 《Chemosphere》2006,62(10):1726-1735
The adsorption of two major molybdenum (Mo) species, molybdate (MoO4(2-)) and tetrathiomolybdate (MoS4(2-)) onto two main iron minerals pyrite (FeS2) and goethite (FeOOH) is addressed to elucidate the possible mechanisms of molybdenum immobilization in anoxic sediments. Suspensions of MoS4(2-) (or MoO4(2-)) and goethite (or pyrite) in 0.1M NaCl solution were equilibrated under anoxic conditions at 25 degrees C in the pH range from 3 to 10. The competitive effects of sulfate, phosphate, and silicate on the adsorption of MoO4(2-) and MoS4(2-) by pyrite and goethite are also addressed. Adsorption of MoO4(2-) and MoS4(2-) on pyrite and goethite is in general well described by a Langmuir model at low pH; the extent of sorption is a function of pH and the surface loading. Maximum sorption is observed in the acidic pH range (pH<5) at low surface loading. The adsorption of molybdenum (micromol g(-1)) depends upon Mo species and on the type of iron mineral following the order: MoS4(2-)-goethite > MoO4(2-)-goethite > MoS4(2-)-pyrite > MoO4(2-)-pyrite. Phosphate appears to compete strongly with MoO4(2-) and MoS4(2-) for the sorption sites of pyrite and goethite. The strength of the phosphate competitive effect follows the sequence of MoO4(2-)-goethite approximately = MoO4(2-)-pyrite > MoS4(2-)-pyrite > MoS4(2-)-goethite. Silicate and sulfate have a negligible effect on the sorption of MoO4(2-) and MoS4(2-). The preferred adsorption by iron mineral of MoS4(2-), as well as its behavior in the presence of competitive anions suggests that tetrathiomolybdate species may be an ultimate reservoir and may control Mo enrichment in the sediments.  相似文献   

3.
Phyu YL  Warne MS  Lim RP 《Chemosphere》2005,58(9):1231-1239
Acute (10 day) semi-static toxicity tests in which the midge, Chironomus tepperi, were exposed to atrazine and molinate were conducted in laboratory water and in river water, in the absence and presence of sediment. The bioavailability measured as median lethal concentrations (LC50) and 95% fiducial limits (FLs) of atrazine to C. tepperi in laboratory water in the absence and presence of sediment were 16.6 (14.3-19.4) and 21.0 (18.2-24.1) mg l(-1), respectively while the corresponding values in river water were 16.7 (14.7-19.0) and 22.7 (20.3-25.4) mg l(-1), respectively. For molinate, the LC50 and FL values in laboratory water in the absence and presence of sediment were 8.8 (6.8-11.4) and 14.3 (12.4-16.4) mg l(-1), respectively and the corresponding values in river water were 9.3 (7.6-11.3) and 14.5 (12.4-16.9) mg l(-1), respectively. Atrazine has low toxicity (LC50 > 10 mg l(-1)) while molinate has moderate toxicity (1 mg l(-1) < LC50 < 10 mg l(-1)) to C. tepperi. River water did not significantly (P > 0.05) reduce the bioavailability of either chemical to C. tepperi. However, the presence of sediment did significantly (P < 0.05) reduce the bioavailability of both atrazine and molinate to C. tepperi.  相似文献   

4.
Alkylphenols (APs), alkylphenol ethoxylates (APEOs), ethoxycarboxylate metabolites (APECs) and bisphenol A were determined in surface water using solid-phase extraction (SPE) followed by triple-quadrupole LC-MS-MS. APs were separated by LC from APECs using an acetonitrile-water-gradient without the addition of any buffer. Nonylphenol ethoxycarboxylates (NPECs) interfere in the detection of nonylphenols (NPs) when using an acidic mobile phase, because they produce the same MS-MS fragment ions (219>133 and 147). 4n-NP shows the characteristic transition 219>106; it is well suited as internal standard. Nonylphenol ethoxylates NPE(n)Os (n=1-17) were analysed separately in a second run by positive ionization using an ammonium acetate mobile phase. Textile industry discharges, the corresponding wastewater treatment plant (WWTP) effluents and the receiving rivers in Belgium and Italy were analysed. Among the substances investigated, NPE1C and NPE2O exhibited the highest concentrations in the water samples, up to 4.5 microg l(-1) NPE1C in a WWTP effluent and 3.6 microg l(-1) NPE2O in a river. The highest NP levels were found in the receiving rivers (max. 2.5 microg l(-1)). The predicted no-effect concentration (PNEC) for NP of 0.33 microg l(-1) for water species was frequently exceeded in the surface waters investigated, suggesting potential adverse effects to the aquatic environment.  相似文献   

5.
Waterfowl and passerines in northern Idaho in 1987 had high levels of lead in their blood and tissues that originated primarily from mining and smelting activities. Four Canada geese (Branta canadensis) and one common goldeneye (Bucephala clangula) found dead contained 8 to 38 microg/g (wet mass) of lead in their livers. These levels exceed the lower lethal limit of 5 microg/g in experimental birds. Two of the Canada geese (one each from the contaminated and reference areas) died with ingested lead shotgun pellets (shot) in their gizzards, whereas the other three birds from the contaminated area contained no ingested shot and evidently died from ingesting environmental lead in sediment or biota. Lead burdens in most American robins (Turdus migratorius) and mallards (Anas platyrhynchos) were high, whereas those in tree swallows (Tachycineta bicolor) were slightly elevated. Lead accumulated to potentially hazardous levels in blood and tissues of some nestling robins (maxima of 0.87 microg/g in blood and 5.6 microg/g in liver) and mallards (maxima of 10.2 microg/g in blood and 2.8 microg/g in liver). In mallards, lead levels and associated physiological characteristics of blood were significantly different in juveniles (HY) versus adults (AHY). Activity of delta-aminolevulinic acid dehydratase (ALAD) was about 87 to 95% lower than values for control birds in experimental studies. Activity of ALAD was significantly inversely correlated with blood lead levels. Cadmium was detected in kidneys of most birds, but even the maximum concentration of 7.5 microg/g in an AHY mallard was below known harmful levels.  相似文献   

6.
The kinetics of slow desorption were studied for four soils and four sediments with widely varying characteristics [organic carbon (OC) content 0.5-50%, organic matter (OM) aromatic content (7-37%)] for three chlorobenzenes and five polychlorinated biphenyls (PCBs). Slowly and very slowly desorbing fractions ranged from 1 to 50% (slow) and 3 to 40% (very slow) of the total amount sorbed, and were observed for all compounds and all soils and sediments. In spite of the wide variations in sorbate K(OW) (factor 1000) and sorbent characteristics, the rate constants of slow (k(slow), around 10(-3) h(-1)) and very slow (k(very slow), 10(-5)-10(-4) h(-1)) desorption appeared to be rather constant among the sorbates and sorbents (both within a factor of 5). There was a good correlation (r(2) above 0.9) between the distribution over the slow, very slow and rapid sediment fractions and log K(OC), indicating that sorbate hydrophobicity may be important for this distribution. No correlation could be found between sorbent characteristics [OC, N, and O in the organic matter, polarity index C/(N+O), OC aromaticity as determined by CP-MAS (13)C-NMR] and slow desorption parameters (slowly/very slowly desorbing fractions+corresponding rate constants). The absence of (1) a correlation between k(slow) and k(very slow), respectively, and OC content, and (2) the narrow range of k(slow) and k(very slow) values, indicates that intra-OM diffusion is not the mechanism of slow or very slow desorption, because on the basis of this mechanism it would be expected that increasing OC content would lead to longer diffusion pathlengths and, consequently, to smaller rate constants. In addition, it was tested whether differential scanning calorimetry would reveal a glass transition in the soils/sediments. In spite of the sensitivity of the equipment used (changes in heat flow in the micro-Watt range were measurable), a glass transition was not observed. This means that activation enthalpies of slow desorption can be calculated from desorption measurements at various temperatures. In the present study these values ranged from 60 to 100 kJ/mol among the various soils and sediments studied.  相似文献   

7.
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log K ow 2.59), triethyl-chloro-phosphate (TCEP) (log K ow 1.44), tributyl phosphate (TBP) (log K ow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log K ow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log K ow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6–1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10–20 and 1.7–4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015–0.110). Despite that DEET and NBBS have log K ow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.  相似文献   

8.
The persistence and dissipation kinetics of trifloxystrobin and tebuconazole on onion were studied after application of their combination formulation at a standard and double dose of 75 + 150 and 150 + 300 g a.i. ha?1. The fungicides were extracted with acetone, cleaned-up using activated charcoal (trifloxystrobin) and neutral alumina (tebuconazole). Analysis was carried out by gas chromatograph (GC) and confirmed by gas chromatograph mass spectrometry (GC-MS). The recovery was above 80% and limit of quantification (LOQ) 0.05 mg kg?1 for both fungicides. Initial residue deposits of trifloxystrobin were 0.68 and 1.01 mg kg?1 and tebuconazole 0.673 and 1.95 mg kg?1 from standard and double dose treatments, respectively. Dissipation of the fungicides followed first-order kinetics and the half life of degradation was 6–6.6 days. Matured onion bulb (and field soil) harvested after 30 days was free from fungicide residues. These findings suggest recommended safe pre-harvest interval (PHI) of 14 and 25 days for spring onion consumption after treatment of Nativo 75 WG at the standard and double doses, respectively. Matured onion bulbs at harvest were free from fungicide residues.  相似文献   

9.
As the production of nanoparticles of ZnO, TiO2 and CuO is increasing, their (eco)toxicity to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus was studied with a special emphasis on product formulations (nano or bulk oxides) and solubilization of particles. Our innovative approach based on the combination of traditional ecotoxicology methods and metal-specific recombinant biosensors allowed to clearly differentiate the toxic effects of metal oxides per se and solubilized metal ions. Suspensions of nano and bulk TiO2 were not toxic even at 20 g l(-1). All Zn formulations were very toxic: L(E)C50 (mg l(-1)) for bulk ZnO, nanoZnO and ZnSO4.7H2O: 1.8, 1.9, 1.1 (V. fischeri); 8.8, 3.2, 6.1 (D. magna) and 0.24, 0.18, 0.98 (T. platyurus), respectively. The toxicity was due to solubilized Zn ions as proved with recombinant Zn-sensor bacteria. Differently from Zn compounds, Cu compounds had different toxicities: L(E)C50 (mg l(-1)) for bulk CuO, nano CuO and CuSO4: 3811, 79, 1.6 (V. fischeri), 165, 3.2, 0,17 (D. magna) and 95, 2.1, 0.11 (T. platyurus), respectively. Cu-sensor bacteria showed that toxicity to V. fischeri and T. platyurus was largely explained by soluble Cu ions. However, for Daphnia magna, nano and bulk CuO proved less bioavailable than for bacterial Cu-sensor. This is the first evaluation of ZnO, CuO and TiO2 toxicity to V. fischeri and T. platyurus. For nano ZnO and nano CuO this is also a first study for D. magna.  相似文献   

10.
The effects of joint action of SO(2) and HF on the yield and quality of wheat and barley were studied by exposing them to combinations of <13,130 or 267 microg m(-3) SO(2) and 0.03 or 0.38 microg m(-3) HF in open top chambers for 90 days. At the concentrations used, SO(2) had greater effects than HF. All responses were marked by compensatory changes. The treatments had no effect on wheat yield, although SO(2) reduced shoot weight. SO(2) increased the growth and yield of barley, and HF or SO(2) increased the grain protein concentration of barley and wheat. The effects of mixtures of SO(2) and HF were complex, but often antagonistic, as the addition of HF counteracted the effect of SO(2) alone.  相似文献   

11.
A novel laboratory microcosm test was developed to measure the diffusion of native PAHs and PCBs from sediments in the presence and absence of a capping layer. Diffusive flux of 15 PAHs and 7 PCBs from uncapped sediment from Oslo harbour was 3.8+/-0.9 microg m(-2)d(-1) and 0.010+/-0.003 microg m(-2)d(-1), respectively. The flux from sediments capped with 1cm mineral cap (crushed limestone or crushed gneiss (0-2mm)), observed during the first 410 d, was 3.5-7.3% of the flux from uncapped sediments. By measuring freely dissolved pore water concentrations of 10 PAHs the flux in the microcosm was modelled with steady state and transient diffusion models. The measured flux from uncapped sediment was 27-290% of modelled steady state flux. Good agreement was also found between the measured flux of pyrene from capped sediment and the flux modelled with the transient model when fitting only with the distribution coefficients for pyrene between the cap material and water (Kd_pyr). Fitted Kd_pyr, (210 and 23 l kg(-1) for limestone and gneiss, respectively) was in the same order of magnitude as K(d) calculated from organic carbon content in the cap materials (68 and 14 l kg(-1) respectively). Calculation of the efficiency of a hypothetical cap with 10 cm diffusion path shows that the increased diffusion path length alone can yield a flux reduction >99% through a strong increase in the stagnant diffusive boundary layer from <1 to 100mm.  相似文献   

12.
The gain and loss rates and the biological half-life of polychlorinated biphenyls (PCBs) and p,p'-DDE in wild birds were calculated using the values on burdens of these compounds in the bodies of adelie penguins in a previous report (Subramanian et al., 1986). The daily loss rate of PCBs (0.26%) was found to be higher than DDT compounds (0.12%) resulting in the longer biological half-life of the latter compounds (580 days) than PCBs (270 days). Hence, once DDT compounds are absorbed they are more persistent in the organisms' bodies due to their high lipophilicity and comparatively less metabolisable nature than PCBs.  相似文献   

13.
In the troposphere anthropogenic aerosol emissions are increasing in recent decades, which can influence the earth's climate. The present study addresses the characterization of aerosols and their radiative impacts over urban (Hyderabad) and rural (Srisailam) environments by using aerosol optical depth (AOD) measurements from MICROTOPS-II sunphotometer. AOD measurements over the urban site showed high values compared to the rural site. Over the urban environment aerosol forcing at the surface is as high as -42 W m(-2) and at the top of the atmosphere (TOA) is +10 W m(-2) whereas at the rural environment aerosol forcing at the surface has been observed to be -11 W m(-2) and at TOA it is observed to be +5.7 W m(-2). The difference between TOA and the surface forcing over the urban environment is +32 W m(-2) and over the rural environment is +5.3 W m(-2), which shows the absorption capacity of the respective atmospheres.  相似文献   

14.
Pesticides are often used in agriculture, especially in floriculture. They are frequently applied in binary or ternary mixtures. Nevertheless, their impact on the genetic material has been scarcely explored. In this study, the mutagenic and cytostatic effect of three widely used pesticides, alone and combined, were analyzed. Briefly, lymphocytes cultures were obtained from peripheral blood samples of five healthy donors to determine the sister chromatid exchange and the replicative index (RI). Then, lymphocytes were exposed to Tamaron (100 ppm), Lannate (200 ppm) and Manzate (300 ppm) alone and combined. For the binary mixtures, the concentrations used were 50 ppm of Tamaron, 100 ppm of Lannate and 150 ppm of Manzate. For the ternary mixtures the following concentrations were used: Tamaron (33 ppm), Lannate (70 ppm) and Manzate (100 ppm). Finally, differential staining was performed. It was found that the frequency of SCE/cell showed a significant difference (P ≤ 0.05) between the control (2.66) and the individual treatments of Tamaron (4.87), Lannate: (5.12) and Manzate (4.23). Also, the values of the SCE in the binary mixture of Tamaron+Lannate (5.57), Tamaron+Manzate (6.06) and Lannate+Manzate (6.22) and the ternary mixture (6.63) were statistically different compared to the control. In the RI there was a significant difference between the control (1.98) and the Manzate (1.87). RI differences were also statistically significant (P ≤ 0.05) in mixtures of Tamaron+Lannate (1.64), Tamaron+Manzate (1.63), Lannate+Manzate (1.69) and total mixture (1.53). Therefore, it is suggested that these pesticides alone and in mixtures have both mutagenic and cytostatic synergistic effect in human lymphocytes in vitro.  相似文献   

15.
Abstract

Levels of acephate (OrtheneR) and its principle metabolite, methamidophos, in/on greenhouse‐grown pepper and cucumber fruits and leaves in relation to the applied methamidophos were monitored. Dislodgeable and total residues of acephate and methamidophos were determined by gas‐liquid chromatography equipped with a flame ionization detector (GC‐FID) and were confirmed by nitrogen phosphorus detector (GC‐NPD). The dissipation curves of the residues followed first‐order kinetics (R2> 0.96). Initial residues of acephate on fruits varied between pepper (15.12 ppm) and cucumber (2.16 ppm) . Total residues in fruits and leaves determined at intervals following application revealed the greater persistence of acephate on pepper fruits (half‐life [t1/2] of 6 d) than on cucumber fruits (t1/2 was 3.7 d) . T1/2 values for the applied methamidophos were 4.7 and 5.3 d on pepper and cucumber fruits, respectively. Deacety‐lation of acephate (formation of its metabolite) was detectable 1 d following acephate treatment and reached a maximum of 2.05% of initial acephate residues 3 d after application on pepper fruits. On cucumber fruits, acephate metabolite reached a maximum of 2.12% one wk following application. No acephate residues were detected above the limit of detection of 0.001 ppm in pepper fruits 50 d following acephate application while its metabolite was detectable at that time (detectability limit was 0.0001 ppm).  相似文献   

16.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

17.
Analysis of Calabash chalk has been done using energy dispersive X-ray fluorescence spectroscopy (EDXRF), X-ray diffraction (XRD) and pressurised fluid extraction (PFE) followed by gas chromatography (GC) with mass selective detection (MSD). It was found by XRD that the composition of Calabash chalk was an aluminium silicate hydroxide from the kaolin clay group with the possible formula Al(2)Si(2)O(5)(OH)(4). Multi-elemental analysis by EDXRF was able to quantify 22 elements in Calabash chalk including lead at a mean concentration of approximately 40 mg/kg. A range of persistent organic pollutants were identified and quantified in Calabash chalk including alpha lindane, endrin, endosulphan II and p,p'-DDD using PFE-GC-MSD.  相似文献   

18.
The results of four toxicity bioassays of selected anionic and nonionic surface active agents were presented. Three widely used anionic surfactants that belong to alkyl sulphates (AS), alkylbenzene sulphonates (LAS) and alkylpolyoxyethylene sulphates (AES) as well as nonionic surfactants: polyoxyethylene alkyl ethers (AE) and polyoxylethylene alkylphenyl ethers (APE) were tested. Three different toxicity assays to aquatic organisms: Physa acuta Draparnaud, Artemia salina and Raphidocelis subcapitata were applied. Additionally, the genotoxicity test with Bacillus subtilis M45 Rec- and H17 Rec+ strains was performed. The obtained results showed that none of the surfactants studied was genotoxic at the concentration 1000 mg l(-1). On the basis of toxicity tests to aquatic organisms all tested anionic surfactants were harmful (LC50 between 10 and 100 mg l(-1)), whereas nonionic ones were toxic (LC50 between 1 and 10 mg l(-1)) or even highly toxic (LC50 below 1 mg l(-1)). Moreover, the bigger was the molecular weight of the tested compound, the higher toxicity was observed.  相似文献   

19.
Semaphore crabs (Heloecius cordiformis), soldier crabs (Mictyris platycheles), ghost shrimps (Trypaea australiensis), pygmy mussels (Xenostrobus securis), and polychaetes (Eunice sp.), key benthic prey items of predatory fish commonly found in estuaries throughout southeastern Australia, were exposed to dissolved (109)Cd and (75)Se for 385 h at 30 k Bq/l (uptake phase), followed by exposure to radionuclide-free water for 189 h (loss phase). The whole body uptake rates of (75)Se by pygmy mussels, semaphore crabs and soldier crabs were 1.9, 2.4 and 4.1 times higher than (109)Cd, respectively. There were no significant (P>0.05) differences between the uptake rates of (75)Se and (109)Cd for ghost shrimps and polychaetes. The uptake rates of (109)Cd and (75)Se were highest in pygmy mussels; about six times higher than in soldier crabs for (109)Cd and in polychaetes for (75)Se - the organisms with the lowest uptake rates. The loss rates of (109)Cd and (75)Se were highest in semaphore crabs; about four times higher than in polychaetes for (109)Cd and nine times higher than in ghost shrimps for (75)Se - the organisms with the lowest loss rates. The loss of (109)Cd and (75)Se in all organisms was best described by a two (i.e. short and a longer-lived) compartment model. In the short-lived, or rapidly exchanging, compartment, the biological half-lives of (75)Se (16-39 h) were about three times greater than those of (109)Cd (5-12h). In contrast, the biological half-lives of (109)Cd in the longer-lived, or slowly exchanging compartment(s), were typically greater (1370-5950 h) than those of (75)Se (161-1500 h). Semaphore crabs had the shortest biological half-lives of both radionuclides in the long-lived compartment, whereas polychaetes had the greatest biological half-life for (109)Cd (5950 h), and ghost shrimps had the greatest biological half-life for (75)Se (1500 h). This study provides the first reported data for the biological half-lives of Se in estuarine decapod crustaceans. Moreover, it emphasises the importance of determining metal(loid) accumulation and loss kinetics in keystone prey items, which consequently influences their trophic transfer potential to higher-order predators.  相似文献   

20.
Fipronil is a phenylpyrazole insecticide used in agricultural and domestic settings for controlling various insect pests in crops, lawns, and residential structures. Fipronil is chiral; however, it is released into the environment as a racemic mixture of two enantiomers. In this study, the acute toxicity of the (S,+) and (R,-) enantiomers and the racemic mixture of fipronil were assessed using Simulium vittatum IS-7 (black fly), Xenopus laevis (African clawed frog), Procambarus clarkii (crayfish), Palaemonetes pugio (grass shrimp), Mercenaria mercenaria (hardshell clam), and Dunaliella tertiolecta (phytoplankton). Results showed that S. vittatum IS-7 was the most sensitive freshwater species to the racemic mixture of fipronil (LC50 = 0.65 microg/L) while P. pugio was the most sensitive marine species (LC50 = 0.32 microg/L). Procambarus clarkii were significantly more sensitive to the (S,+) enantiomer while larval P. pugio were significantly more sensitive to the (R,-) enantiomer. Enantioselective toxicity was not observed in the other organisms tested. Increased mortality and minimal recovery was observed in all species tested for recovery from fipronil exposure. These results indicate that the most toxic isomer of fipronil is organism-specific and that enantioselective toxicity may be more common in crustaceans than in other aquatic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号