首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Stratospheric ozone depletion, UV-B radiation and crop disease   总被引:9,自引:0,他引:9  
Ultraviolet-B radiation (UV-B: 290-315 nm) is expected to increase as the result of stratospheric ozone depletion. Within the environmental range, UV-B effects on host plants appear to be largely a function of photomorphogenic responses, while effects on fungal pathogens may include both photomorphogenesis and damage. The effects of increased UV-B on plant-pathogen interactions has been studied in only a few pathosystems, and have used a wide range of techniques, making generalisations difficult. Increased UV-B after inoculation tends to reduce disease, perhaps due to direct damage to the pathogen, although responses vary markedly between and within pathogen species. Using Septoria tritici infection of wheat as a model system, it is suggested that even in a species that is inherently sensitive to UV-B, the effects of ozone depletion in the field are likely to be small compared with the effects of variation in UV-B due to season and varying cloud. Increased UV-B before inoculation causes a range of effects in different systems, but an increase in subsequent disease is a common response, perhaps due to changes in host surface properties or chemical composition. Although it seems unlikely that most crop diseases will be greatly affected by stratospheric ozone depletion within the limits currently expected, the lack of a detailed understanding of the mechanisms by which UV-B influences plant-pathogen interactions in most pathosystems is a significant limit to such predictions.  相似文献   

2.
Ambient concentrations of ozone in Europe are high enough to cause negative effects on vegetation. Therefore, many efforts have been made to determine exposure indices and critical levels for protection of vegetation. In this context, the choice of a suitable attribute to determine the pollutant effect is of paramount importance. Until now, much of the work has been done with attributes such as biomass or growth. In the present work correlation factors have been established between biochemical parameters (peroxidase activity, ascorbate and sulfhydryl contents) of Pinus radiata trees and exposure indices of ozone. Our results show that peroxidase cannot be used as an indicator of effects of long-term exposure to ozone but still remains as an excellent indicator of short-term ozone fluctuations in the field. Ascorbate may act as an intermediate indicator responding to both short fluctuations and long-term exposures to ozone. Finally, sulfhydryl may be used as a long-term indicator in relation to the AOT (average over threshold) exposure index. Our results also point to the fact that Pinus radiata may be affected by ozone at AOT values lower than 10 ppm.h as already observed with other tree species.  相似文献   

3.
The projected doubling of current levels of atmospheric carbon dioxide concentration ([CO(2)]) during the next century along with increases in other radiatively active gases have led to predictions of increases in global air temperature and shifts in precipitation patterns. Additionally, stratospheric ozone depletion may result in increased ultraviolet-B (UV-B) radiation incident at the Earth's surface in some areas. Since these changes in the Earth's atmosphere may have profound effects on vegetation, the objectives of this paper are to summarize some of the recent research on plant responses to [CO(2)], temperature and UV-B radiation. Elevated [CO(2)] increases photosynthesis and usually results in increased biomass, and seed yield. The magnitude of these increases and the specific photosynthetic response depends on the plant species, and are strongly influenced by other environmental factors including temperature, light level, and the availability of water and nutrients. While elevated [CO(2)] reduces transpiration and increases photosynthetic water-use efficiency, increasing air temperature can result in greater water use, accelerated plant developmental rate, and shortened growth duration. Experiments on UV-B radiation exposure have demonstrated a wide range of photobiological responses among plants with decreases in photosynthesis and plant growth among more sensitive species. Although a few studies have addressed the interactive effects of [CO(2)] and temperature on plants, information on the effects of UV-B radiation at elevated [CO(2)] is scarce. Since [CO(2)], temperature and UV-B radiation may increase concurrently, more research is needed to determine plant responses to the interactive effects of these environmental variables.  相似文献   

4.
Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.  相似文献   

5.
There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to radiative cloud forcing. The effects of UV-B, CO2 and O3 on plants have been studied under growth chamber, greenhouse and field conditions. Few studies, if any, have examined the joint effects of more than one variable on plant response. There are methodological problems associated with many of these experiments. Thus, while results obtained from these studies can assist in our understanding, they must be viewed with caution in the context of the real world and predictions into the future. Biomass responses of plants to enhanced UV-B can be negative (adverse effect); positive (stimulatory effect) or no effect (tolerant). Sensitivity rankings have been developed for both crop and tree species. However, such rankings for UV-B do not consider dose-response curves. There are inconsistencies between the results obtained under controlled conditions versus field observations. Some of these inconsistencies appear due to the differences in responses between cultivars and varieties of a given plant species; and differences in the experimental methodology and protocol used. Nevertheless, based on the available literature, listings of sensitive crop and native plant species to UV-B are provided. Historically, plant biologists have studied the effects of CO2 on plants for many decades. Experiments have been performed under growth chamber, greenhouse and field conditions. Evidence is presented for various plant species in the form of relative yield increases due to CO2 enrichment. Sensitivity rankings (biomass response) are agein provided for crops and native plant species. However, most publications on the numerical analysis of cause-effect relationships do not consider sensitivity analysis of the mode used. Ozone is considered to be the most phytotoxic regional scale air pollutant. In the pre-occupation of loss in the O3 column, any increases in tropospheric O3 concentrations may be undermined relative to vegetation effects. As with the other stress factors, the effects of O3 have been studied both under controlled and field conditions. Thboth under controlled and field conditions. The numerical explanation of cause-effect relationships of O3 is a much debated subject at the present time. Much of the controversy is directed toward the definition of the highly stochastic, O3 exposure dynamics in time and space. Nevertheless, sensitivity rankings (biomass response) are provided for crops and native vegetation. The joint effects of UV-B, CO2 and O3 are poorly understood. Based on the literature of plant response to individual stress factors and chemical and physical climatology of North America, we conclude that nine different crops may be sensitive to the joint effects: three grain and six vegetable crops (sorghum, oat, rice, pea, bean, potato, lettuce, cucumber and tomato). In North America, we consider Ponderosa and loblolly pines as vulnerable among tree species. This conclusion should be moderated by the fact that there are few, if any, data on hardwood species. In conclusion there is much concern for global climate change and its possible effects on vegetation. While this is necessary, such a concern and any predictions must be tempered by the lack of sufficient knowledge. Experiments must be designed on an integrated and realistic basis to answer the question more definitively. This would require very close co-operation and communication among scientists from multiple disciplines. Decision makers must realize this need.  相似文献   

6.
Critical levels for ozone effects on vegetation in Europe   总被引:36,自引:0,他引:36  
The evidence of detrimental effects of ozone on vegetation in Europe, and the need to develop international control policies to reduce ozone exposures which are based on the effects of the pollutant, has led to attempts to define so-called critical levels of ozone above which adverse effects on trees, crops and natural vegetation may occur. This review is a critical assessment of the scientific basis of the concepts used to define critical levels for ozone and identifies the key limitations and uncertainties involved. The review focuses on the Level I critical level approach, which provides an environmental standard or threshold to minimise the effects of ozone on sensitive receptors, but does not seek to quantify the impacts of exceeding the critical level under field conditions. The concept of using the AOT (accumulated exposure over a threshold) to define long-term ozone exposure is demonstrated to be appropriate for several economically important species. The use of 40 ppb (giving the AOT40 index) as a threshold concentration gives a good linear fit to experimental data from open-top chambers for arable crops, but it is less certain that it provides the best fit to data for trees or semi-natural communities. Major uncertainties in defining critical level values relate to the choice of response parameter and species; the absence of data for many receptors, especially those of Mediterranean areas; and extrapolation to field conditions from relatively short-term open-top chamber experiments. The derivation of critical levels for long-lived organisms, such as forest trees, may require the use of modelling techniques based on physiological data from experimental studies. The exposure-response data which have been applied to derive critical levels should not be used to estimate the impacts of ozone over large areas, because of the uncertainties associated with extrapolation from the open-top chamber method, especially for forest trees, and because of spatial variation in atmospheric and environmental conditions, which may alter ozone uptake.  相似文献   

7.
For assessing the effects of air pollution on vegetation, some researchers have used control chambers as the basis of comparison between crops and trees grown in contemporary polluted rural locations and those grown in a clean environment. There has been some concern whether the arbitrary ozone level of 0.025 ppm and below, often used in charcoal-filtration chambers to simulate the natural background concentration of ozone, is appropriate. Because of the many complex and man-made factors that influence ozone levels, it is difficult to determine natural background. To identify a range of ozone exposures that occur at 'clean' sites, we have calculated ozone exposures observed at a number of 'clean' monitoring sites located in the United States and Canada. We do not claim that these sites are totally free from human influence, but rather than the ozone concentrations observed at these 'clean' sites may be appropriate for use by vegetation researchers in control chambers as pragmatic and defensible surrogates for natural background. For comparison, we have also calculated ozone exposures observed at four 'clean' remote sites in the Northern and Southern Hemispheres and at two remote sites (Whiteface Mountain, NY and Hohenpeissenberg, FRG) that are considered to be more polluted. Exposure indices relevant for describing the relationship between ozone and vegetation effects were applied. For studying the effects of ozone on vegetation, the higher concentrations are of interest. The sigmoidally-weighted index appeared to best separate those sites that experienced frequent high concentration exposures from those that experienced few high concentrations. Although there was a consistent seasonal pattern for the National Oceanic and Atmospheric Administration (NOAA) Geophysical Monitoring for Climate Change (GMCC) sites indicating a winter/spring maximum, this was not the case for the other remote sites. Some sites in the continental United States and southern Canada experienced ozone exposures in the range between those values experienced at the South Pole and Mauna Loa NOAA GMCC sites. The 7-month average of the daily 7 h average ozone concentration at 'clean' sites located in the continental United States and southern Canada ranged from 0.028 to 0.050 ppm. Our analysis indicates that seasonal 7 h average values of 0.025 ppm and below, used by some vegetation researchers as a reference point, may be too low and that estimates of crop losses and tree damage in many locations may have been too high. Our analysis indicates that a more appropriate reference point in North America might be between 0.030 and 0.045 ppm. We have observed that the subtle effects of changing distribution patterns of hourly average ozone concentrations may be obscured with the use of exposure indices such as the monthly average. Future assessments of the effects associated with ground-level ozone should involve the use of exposure indices sensitive to changes in the distribution patterns of hourly average ozone concentrations.  相似文献   

8.
Experimental results from plants receiving elevated doses of UV-B radiation generally show that Mediterranean forest species are well protected against increases in UV-B radiation. Natural adaptations to water stress and excess light (elevated concentrations of UV-B screening compounds, leaf hairs, thick cuticle and epidermis), and UV-B responses (thickening of the cuticle, increase in carotenoids) may avoid or counter-balance UV-B radiation damage. This response confirms that Mediterranean forest vegetation is adapted to face oxidative stress factors, such as elevated tropospheric ozone concentrations, drought and high radiation, including UV-B. Nevertheless, in the long term, species-specific and season-specific differential responses in growth, physiology, phenology and reproductive behaviour may alter the interactions between species and lead to slow but important changes in ecosystem structure and function.  相似文献   

9.
Approximately 35 species representing 14 tree genera have been evaluated for responses to UV-B radiation in North America. The best representation has been in the conifers where some 20 species representing three genera have been studied. Overall, about 1/3 of these have demonstrated some deleterious response to UV-B. However, most negative impacts have been observed under controlled environment conditions where sensitivity may be enhanced. Therefore, it seems unlikely that expected levels of ozone depletion will result in direct losses in productivity. However, the role that ambient or enhanced levels of UV-B may play in forest ecosystem processes is more difficult to access. One possible indirect response of forests to changes in UV-B radiation levels could be via alterations in plant secondary metabolites. Increases in phenolics and flavonoids that enhance epidermal UV-screening effectiveness may also influence leaf development, water relations or ecosystem processes such as plant-herbivore interactions or decomposition.  相似文献   

10.
Since the 1960s, much effort has been devoted to collecting and formatting air quality data. This paper discusses 1) the availability of air quality data for assessing potential biological impacts associated with ozone and sulfur dioxide ambient exposures, 2) examples of how air quality data can be characterized for assessing vegetation effects, and 3) the limitations associated with some exposure parameters used for developing relevant vegetation doseresponse yield reduction models. Data are presented showing that some ozone monitoring sites not continuously affected by local urban sources experience consecutive hourly ozone exposures ≥0.10 ppm in the late evening and early morning hours. These sites experience their maximum ozone concentrations either in the spring or summer months. Sites influenced by local rural sources experience their maximum ozone concentrations during the summer months. It is suggested that further research be performed to identify whether the sensitivity of a target organism at the time of exposure, as well as the pollutant concentration and chemical form that enters into the target organism, is as important in defining effects as air pollutant exposure alone.  相似文献   

11.
Solar ultraviolet radiation (UVR, 280-400 nm) is known to cause a number of detrimental effects in aquatic organisms. The area of Patagonia, which is sometimes under the influence of the Antarctic ozone "hole", occasionally receives enhanced levels of ultraviolet B radiation (UV-B, 280-315 nm). Great efforts have been put into creating a database for UVR climatology by installing a variety of instruments in several localities in the region. However, no comparable effort has been made to determine the impact of normal and enhanced levels of solar UVR upon organisms. Most of the photobiological research in aquatic systems of Patagonia has focused on determining the effects of solar UVR in phytoplankton photosynthesis, DNA damage, and mortality, fecundity and repair mechanisms in zooplanktonic species. Some work has also been done with fish larvae and interactions between species at low trophic levels of the aquatic food web. The results of these studies indicate that in order to assess the overall impact of UVR in a certain waterbody, it is also necessary to consider other variables, such as changes in cloudiness, ozone concentrations, differential sensitivity of organisms, and depth of the upper mixed layer/epilimnion. All factors that can preclude or benefit the acclimation of species to solar radiation.  相似文献   

12.
Five clones of 3-year old Norway spruce (Picea abies [L.] Karst), planted in a soil from the Bavarian Forest (pH 4.4) or a soil from the Calcareous Bavarian Alps (pH 6.9), were exposed for two successive vegetation periods, in closed environmental chambers, to a pollution treatment consisting of acidic mist (pH 3.0) plus ozone levels of 100 microg m(-3) with episodes of 130-360 microg m(-3); control trees were exposed to mist of pH 5.6 and ozone levels of 50 microg m(-3). Climatic and pollution protocols followed the diurnal and seasonal pattern characteristic for the Inner Bavarian Forest in Southern Germany, an area affected by the new-type forest decline. Biometric parameters were strongly related to clone and soil. Pollution treatment had a limited effect on only a few growth parameters. The stem diameter growth increment of two clones was reduced by pollution treatment in both soils, a third clone was affected in the acidic soil only. Two other clones were not affected at all. Stem volume increment of three clones, calculated as D(2)H, was reduced by pollution treatment in the neutral soil, a fourth clone was affected in the acidic soil only. Bud break was either delayed (two clones) or accelerated (two other clones) by treatment. Depending on soil and clone, needle yellowing was observed in previous years' needles in both treatment and control trees exposed to increased light intensities. The 'spotted' yellowing was not identical to symptoms found in forest decline areas and was most likely a consequence of nutrient deficiencies during the vegetation period preceding the experiment. The results of this experiment are discussed with regard to field observations and forest productivity. The complex pattern of growth responses resulting from interactions between air pollution, soil and genetic factors is considered to reflect different susceptibilities of trees to air pollutants.  相似文献   

13.
Many species of amphibians have experienced population and range reductions. It has been hypothesized that sensitivity to UV-B may contribute to the population declines of some amphibian species. We performed field experiments to measure the effects of solar UV-B on the hatching success of three Finnish anuran species, the common frog (Rana temporaria), moor frog (Rana arvalis) and common toad (Bufo bufo). Further, the effects of natural UV-B radiation on survival of the tadpoles of the same three species of anurans were tested. A significant percentage of R. temporaria and B. bufo embryos survived when exposed to and protected from solar UV-B and hatching success was not affected by solar radiation. Elimination of solar UV-B significantly increased the hatching success of R. arvalis, but embryonic mortality was high in both treatments. The data indicates that under natural conditions, solar UV-B radiation influences embryo survival in R. arvalis, but has no effect on R. temporaria and B. bufo. Solar UV-B radiation had no effect on R. temporaria and R. arvalis tadpoles, but elimination of UV-B significantly increased survival of B. bufo tadpoles. It seems that ambient UV-radiation levels have no effect on R. temporaria but may affect R. arvalis and B. bufo at different developmental stages.  相似文献   

14.
Continued world population growth results in increased emission of gases from agriculture, combustion of fossil fuels, and industrial processes. This causes changes in the chemical composition of the atmosphere. Evidence is emerging that increased solar ultraviolet-B (UV-B) radiation is reaching the earth's atmosphere, due to stratospheric ozone depletion. Carbon dioxide (CO(2)), ozone (O(3)) and UV-B are individual climate change factors that have direct biological effects on plants. Such effects may directly or indirectly affect the incidence and severity of plant diseases, caused by biotic agents. Carbon dioxide may increase plant canopy size and density, resulting in a greater biomass of high nutritional quality, combined with a much higher microclimate relative humidity. This would be likely to promote plant diseases such as rusts, powdery mildews, leaf spots and blights. Inoculum potential from greater overwintering crop debris would also be increased. Ozone is likely to have adverse effects on plant growth. Necrotrophic pathogens may colonize plants weakened by O(3) at an accelerated rate, while obligate biotroph infections may be lessened. Ozone is unlikely to have direct adverse effects on fungal pathogens. Ozone effects on plant diseases are host plant mediated. The principal effects of increased UV-B on plant diseases would be via alterations in host plants. Increased flavonoids could lead to increased diseased resistance. Reduced net photosynthesis and premature ripening and senescence could result in a decrease in diseases caused by biotrophs and an increase in those caused by necrotrophs. Microbial plant pathogens are less likely to be adversely affected by CO(2), O(3) and UV-B than are their corresponding host plants. Changes in host plants may result in expectable alterations of disease incidence, depending on host plant growth stages and type of pathogen. Given the importance of plant diseases in world food and fiber production, it is essential to begin studying the effects of increased CO(2), O(3) and UV-B (and other climate change factors) on plant diseases. We know very little about the actual impacts of climate change factors on disease epidemiology. Epidemiologists should be encouraged to consider CO(2), O(3) and UV-B as factors in their field studies.  相似文献   

15.
Adverse biological effects of ultraviolet-B (UV-B) radiation have been well documented for phytoplankton and zooplankton in both marine and freshwater ecosystems. However, investigations of interactions between UV-B and anthropogenic toxicants have focused primarily on the chemical interactions between UV-B and the toxicant. Here we investigate the potential for UV-B to increase the sensitivity of the rotifer Brachionus calyciflorus to either acute pentachlorophenol (PCP) or mercury toxicity, independent of UV-B effects on these toxicants. UV-B increased the toxicity of PCP and mercury to B. calyciflorus as much as five-fold, depending on duration of UV-B exposure and toxicant concentration. Reductions in the LC(50) of up to 60% were also seen for both toxicants. UV-B alone effectively eliminated B. calyciflorus reproduction and reduced ingestion by up to 90%. These results demonstrate the potential for UV-B to increase rotifer sensitivity to anthropogenic stressors independent of photochemical reactions with toxicants.  相似文献   

16.
Air quality standards are established to prevent or minimize the risk of adverse effects from air pollution to human health, vegetation, and materials. In order to develop standards which provide an adequate measure of protection to vegetation, it is necessary to define, in as precise terms as possible, the relationship between ambient air quality and the potential for adverse effects on vegetation. Based on recent evidence published in the literature, as well as retrospective studies using data from the National Crop Loss Assessment Network (NCLAN), cumulative indices can be used to describe exposures of ozone for predicting agricultural crop effects. However, the mathematical form of the standard that may be proposed to protect crops does not necessarily have to be of the same form as that used in the statistical or process oriented mathematical models that relate ambient ozone exposures with vegetation effects. This paper discusses the limitations associated with applying a simple statistic that may take the place of a more biologically meaningful exposure parameter. While the NCLAN data have been helpful in identifying indices that may be appropriate for establishing exposure-response relationships, the limitations associated with the NCLAN protocol need to be considered when attempting to apply these relationships in the establishment of a secondary national ambient air quality standard. The Weibull model derived from NCLAN experiments must demonstrate its generality and universal applicability. Furthermore, its predictive power must be tested using independent sets of field data.  相似文献   

17.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   

18.
Tropospheric ozone has been identified as the most important regional scale air pollutant across much of eastern United States of America and many areas of Mediterranean climes in southern Europe. Recent field surveys in the northeastern USA and in southeastern Spain have revealed many additional plant species that exhibit symptoms typical of ozone-induced injuries. Objectives of this study were to confirm ozone as the cause of the observed foliar symptoms, determine ozone induced exposure/response relationships, and identify possible bio-indicator species. Thirteen native species of northeastern USA and 27 native species of southeastern Spain were selected for study. Plant species were exposed to ozone within 16 CSTR chambers in a greenhouse during the summer seasons of 2000 and 2001; ozone exposures of 30, 60, 90, and 120 ppb were delivered for 7 h/day, 5 days/week. Results have confirmed that with few exceptions, symptoms observed in the field were induced by exposures to ambient ozone. Species differed significantly in terms of the exposures required for the initiation of visible symptoms and subsequent injury progression.  相似文献   

19.
Present evidence suggests that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations of ozone have exceeded 0.5 part per million (ppm) in the Los Angeles area. One-tenth of this level for 8 hours is known to injure very sensitive tobacco varieties. Many plant species are visibly affected after a few hours exposure at concentrations much lower than 0.5 ppm. There is also some evidence that ozone reduces plant growth. Many factors must be taken into account when considering standards to protect vegetation from ozone damage. These include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of plant species, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. Lack of specific routine methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 and 0.10 ppm, respectively, for 1 hour. How these standards relate to the ozone dosage causing acute and chronic injury to various plant species is discussed.  相似文献   

20.
Wang X  Lu W  Wang W  Leung AY 《Chemosphere》2003,52(9):1405-1410
As far as the impact of air pollutants on human health being concerned, ozone is one of the main pollutants in atmosphere. In particular, the ground level ozone is responsible for a variety of adverse effects on both human being and plant life. To protect the humankind from such adverse health effects, early information and precautions of high ozone level need to be supplied in times. In this study, statistical characteristics of ground level ozone is analyzed according to the field monitoring data in mixed residential, commercial and industrial areas, e.g., Tsuen Wan area in Hong Kong. The study deals with the characteristics of hourly and daily mean ozone levels under different climatic conditions such as temperature, solar radiation, wind speed, and other pollutant concentration levels. The study aims to investigate the importance of meteorological factors and their impact on relevant pollutant concentration levels from chemical aspect. Further, reasons causing the spatial and temporal variations of ozone levels are discussed. All these results will provide a physical basis for accurately predicting ozone concentration in extensive, future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号