首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
曾亮  吴敏  吴国娟 《中国环境科学》2019,39(10):4329-4336
为探究不同热解温度下生物炭的电子交换能力,通过限氧升温炭化法,利用水稻秸秆在不同热解温度条件下制备生物炭,与氧气、铁氰化钾氧化剂和柠檬酸钛还原剂进行氧化还原反应,对生物炭的得电子能力(EAC)和失电子能力(EDC)进行定量分析.结果显示,热解温度对生物炭的电子交换能力有较大影响,随热解温度升高至500℃时,生物炭的EAC和EDC达到最大,分别为3.86,1.72mmol/g高于500℃后,随着温度的增加,EAC和EDC逐渐减小,这是由于生物炭的醌类和酚类官能团的结构改变以及持久性自由基强度变化的联合作用.此外,柠檬酸钛和连二硫酸钠两种氧化还原电位不同的还原剂进一步证实了还原剂电位对生物炭EAC的影响.且生物炭具有氧化还原的可逆性,可逆的EAC与EDC之和近似等于生物炭的电子储存能力.  相似文献   

2.
为探究生物炭对厌氧氨氧化工艺中硝酸盐积累的缓解作用,通过批次实验考察了不同热解温度(300,500,700℃)生物炭对厌氧氨氧化系统脱氮性能的影响.结果表明,300,500,700℃生物炭的添加使体系总氮去除率较空白组分别提升了14.6%、7.1%、3.3%,其主要原因是生物炭作为电子介导体促进了硝酸盐的还原,还原产物亚硝酸盐继续进行厌氧氨氧化反应,进一步减少了11.2%、9.1%、5.8%的剩余氨氮.300℃生物炭表面具有丰富的酚类、醛类和酮类等失电子基团,其供电子能力为2.64mmol e-/g,高于500℃(1.92mmol e-/g)和700℃(1.32mmol e-/g)的生物炭,故其更好地强化了体系中的电子转移.微生物群落和功能蛋白分析表明,生物炭的添加增强了Ca.KueneniaPseudomonasThauera等丰度,有利于厌氧氨氧化和反硝化菌的富集,同时,生物炭通过促进NapA(EC:1.9.6.1)和NarG(EC:1.7.5.1)等功能基因的表达,强化了反硝化过程的氮代谢水平.  相似文献   

3.
本研究选用不同热解温度(300,500和700℃)制备的烟梗生物炭,与有机污染物对硝基苯酚(PNP)进行吸附降解反应,探究反应前后烟梗生物炭上持久性自由基(EPFRs)信号强度与其降解有机污染物活性的关系.结果显示:生物炭中EPFRs信号强度随热解温度的升高而从6.155×104升高至1.343×105后降低至5.458×104,而PNP的液相降解率则表现为随热解温度的升高先保持为31%左右不变后下降至14.64%,表明生物炭的EPFRs信号强度与活性并不成正比.300℃热解制备的生物炭中以氧为中心的自由基可以将电子转移给水中的氧分子生成活性氧并促进PNP的降解.而500与700℃热解制备的生物炭中碳为中心的自由基与污染物进行降解反应后生成了新的自由基并被稳定于生物炭表面,导致其自由基信号增强降解活性却大幅下降.  相似文献   

4.
鉴于污泥基生物炭作为重金属吸附剂的研究还缺乏足够的数据,为探讨不同热解温度对生物炭结构性质及其对水体重金属吸附能力的影响,在缺氧条件下于300~900℃范围内以城市污泥为原料制备生物炭,利用元素分析、比表面积测定、电位测定和红外光谱分析等方法对生物炭的理化性质和结构特征进行表征,并选用900℃生物炭进行了吸附重金属Pb、Cr和Cd的试验研究.结果表明:① 300~900℃缺氧条件下制备的生物炭产率为44.39%~69.41%,污泥呈弱酸性(pH为6.35),热解后的生物炭呈碱性(pH为7.7~10.58).② 900℃生物炭中w(H)、w(N)大幅降低,分别比干污泥中减少89.50%和77.16%,而w(C)降低29.22%,固碳作用显著.热解后生物炭比表面积明显增大,700和900℃生物炭比表面积分别达到58.48和87.55 m2/g,最佳制备温度为700~900℃.③ 热解后的生物炭具有大量极性基团,热解温度越高,酸性基团越少,碱性基团含量增多.④ 热解作用使生物炭zeta电位升高,吸附能力增强.⑤ 900℃生物炭吸附Pb、Cr和Cd的最佳pH为7~8,对Pb、Cr和Cd的最大吸附量分别为2.38、2.48和1.16 mg/g.⑥ 各因素对生物炭吸附重金属的影响顺序,对于Pb和Cr表现为生物炭投加量>热解温度;对于Cd,表现为生物炭投加量>pH.研究显示,污泥基生物炭对Pb、Cr的吸附能力高于Cd,影响生物炭吸附行为的主导因子为生物炭投加量,影响Pb和Cr吸附的次要因子为生物炭热解温度,而影响Cd的次要因子为pH.生物炭吸附重金属的主要机理是离子交换吸附、络合反应、表面沉淀和竞争性抑制作用.   相似文献   

5.
生物炭作炭基肥缓释载体的能力与其理化性质密切相关,因此在制备炭基肥前有必要对不同原料和热解温度制备的生物炭的理化性质进行评价.以苹果枝条、棉秆和杜仲枝条为原料,通过生物质干馏设备在400、 500、 600和700℃热解温度下制备生物炭,并对生物炭的pH、比表面积及孔隙结构、表面官能团和矿物组成等理化性质进行表征和灰色关联度分析,结合生产成本评价生物炭用于炭基肥缓释载体的潜力.结果表明,3种原料制备的生物炭的产率均随热解温度的升高而降低,其中400℃制备的苹果枝条生物炭的产率最高(37.4%).所有生物炭的pH值均>10,表现出强碱性.在400~500℃热解温度范围内,苹果枝条、棉秆和杜仲枝条生物炭的比表面积和总孔容随温度的升高增大,最大比表面积分别为265.262 7、 107.449 1和316.185 4 m2·g-1;当热解温度>500℃时,比表面积和总孔容减小.FTIR和XRD图谱分析表明,所有生物炭具有丰富的芳香结构,其中苹果枝条和棉秆生物炭含有较多的矿物组分,杜仲枝条生物炭为非晶生物炭.灰色关联分析表明当热解温度为5...  相似文献   

6.
以传统中药-黄芪废渣为原料,分别在200℃、400℃、500℃、600℃和700℃的厌氧氛围下热解制备生物炭材料(BC200、BC400、BC500、BC600和BC700),并利用BET比表面积分析、FTIR光谱分析、扫描电子显微镜等方法对其进行表征,同时考察不同投加量、吸附时间、初始浓度和pH值下生物炭对磺胺甲基嘧啶的吸附特征.结果表明,随制备温度的升高,生物炭的表面积及吸附性能也显著增加.相比原状黄芪渣(SBET=0.42m2/g),BC700的BET比表面积(SBET=155.69m2/g)增大370倍,对磺胺甲基嘧啶的吸附容量增加185倍.BC700对磺胺甲基嘧啶的等温吸附过程符合Langmuir模型(R2=0.9977),最大吸附容量为11.96mg/g,吸附反应过程满足准二级动力学方程(R2>0.994),且为化学吸附.同时随着溶液初始pH值和投加量的升高,生物炭的吸附容量先增大后减小,最佳吸附pH值为4.  相似文献   

7.
农业废弃物基生物炭对水溶液中镉的吸附效果与机制   总被引:3,自引:2,他引:1  
龚沛云  孙丽娟  宋科  孙雅菲  秦秦  周斌  薛永 《环境科学》2022,43(6):3211-3220
以畜禽粪便(牛粪、鸡粪、猪粪)为原料分别在300℃和700℃下制备生物炭,以作物秸秆(小麦秸秆、水稻秸秆、玉米秸秆)为原料分别在300℃和500℃下制备生物炭,利用比表面积和孔径分析仪、扫描电镜、傅里叶红外光谱仪、X射线衍射仪和CHN分析仪等对农业废弃物基生物炭的理化性质、表面结构和元素组成进行表征,研究生物炭理化性质差异和其对镉吸附效果和机制.结果表明,不同农业废弃物基生物炭对Cd2+的等温吸附符合Langmiur方程,拟合结果发现随着热解温度的升高,牛粪、鸡粪和猪粪基生物炭对Cd2+的最大吸附量分别从83.40、19.65和96.74 mg·g-1增加至106.54、 268.89和164.53 mg·g-1;而不同热解温度下制备的秸秆基生物炭对Cd2+的最大吸附量差异不显著.农业废弃物基生物炭呈碱性,除牛粪生物炭外,灰分含量随热解温度上升而增加.随着热解温度的上升,生物炭孔隙结构变丰富,含氧官能团增加,出现芳香结构.通过定量分析,发现生物炭Cd2+总...  相似文献   

8.
本文通过制备工艺参数的调控,探究芳香化程度、缺陷程度、表面官能团等微结构与污泥基生物炭导电性能之间的构效机制.结果表明:污泥基生物炭芳香化程度越高,其π-π共轭结构越有利于电子的传递,因而导电性能越强.同时,与纯生物质炭规律相反,生物炭的缺陷程度随热解温度的升高而增大.结合XRD对污泥基生物炭成分的分析,该规律可能与污泥中难分解物质在生物炭表面的分布有关.热解温度为900℃,热解时间为30min条件下制备的生物炭电阻率仅为6.834?·cm,已经和纯生物质炭的导电性能极为接近.电化学测试表明低温(≤600℃)下制备的生物炭可能主要通过表面的氧化还原基团或金属完成电子转移,而高温下(>600℃)制备的生物炭则主要依赖其类石墨化结构完成电子的传导.  相似文献   

9.
为探究沼渣基生物炭溶解性有机质(DOM)的组成特性,以厌氧发酵沼渣为原料,在300、400、500、600和700℃热解温度下制备了生物炭,利用紫外-可见光谱、三维荧光光谱以及反相高效液相色谱等手段,研究了生物炭中DOM的组成特性.结果表明:热解温度影响生物炭DOM的组成,随着热解温度的升高,生物炭DOM中溶解性有机碳含量出现大幅降低,由300℃时的33.2 mg/g降至700℃时的0.7 mg/g.生物炭DOM的芳香性和分子量呈先增后减的变化趋势,400℃时其芳香性和分子量最大;在300~500℃热解范围内,生物炭DOM主要与类腐殖质有关,在600~700℃热解温度范围内,生物炭DOM主要是类色氨酸物质;液相色谱分析显示,在254 nm波长处洗脱出4种芳香物质,280 nm波长处洗脱出5种醌基物质,其中4种醌基结构物质赋存在芳香结构中.研究显示,沼渣生物炭DOM的组成与热解温度密切相关,不同的热解温度会影响DOM的芳香性、分子特性、腐殖化程度、亲水性及极性等特征,光谱和色谱分析法可有效表征DOM的不同结构性质.   相似文献   

10.
陈林  平巍  闫彬  吴彦  付川  黄炼旗  刘露  印茂云 《环境工程》2020,38(8):119-124
以城市剩余污泥为原料,于300,400,500,600 ℃温度条件下制备生物炭,通过单因素静态吸附实验探讨制备温度对生物炭吸附Cr(Ⅵ)的影响。结果表明:在500 ℃以内随着温度上升制备的生物炭对Cr(Ⅵ)的吸附量增加,制备温度高于500 ℃后变化不明显;扫描电镜(SEM)、比表面积(BET)、傅里叶红外光谱(FTIR)表征结果显示,热解温度对生物炭表面形貌和官能团组成有显著影响;等温模型及动力学拟合结果表明,生物炭吸附Cr(Ⅵ)为单分子层吸附、物理-化学复合吸附。热解温度对污泥制备生物炭吸附Cr(Ⅵ)的性能有显著影响,最佳制备温度为500 ℃,在此条件制备的生物炭对Cr(Ⅵ)的理论吸附量可达7.93 mg/g。  相似文献   

11.
生物炭对水中五氯酚的吸附性能研究   总被引:8,自引:0,他引:8  
郎印海  刘伟  王慧 《中国环境科学》2014,34(8):2017-2023
利用小麦秸秆和花生壳在300,400,600℃条件下制备生物炭,运用元素分析仪、扫描电镜和比表面积仪对生物炭的理化性质进行表征,同时探讨其对水中五氯酚(PCP)的吸附特性.结果表明,随炭化温度升高,生物炭芳香性增加,极性降低.花生壳生物炭对水中PCP的吸附效果优于小麦秸秆生物炭,3种温度制备的生物炭对PCP吸附量表现为400℃>600℃>300℃.随着生物炭添加量增大,水中PCP去除能力由81.79%提高至89.02%,生物炭的吸附量由30.32减小至5.54mg/g.生物炭对PCP的吸附动力学更符合准二级动力学方程,吸附等温线符合Freundlich方程.吸附过程主要受快速反应控制,降低反应温度有利于生物炭对水中PCP的吸附.  相似文献   

12.
巫林  刘颖  李燕  沈飞  杨刚  伍钧 《环境科学研究》2016,29(10):1537-1545
为寻求高效、廉价的E2(雌二醇激素)吸附剂及开拓蚯蚓粪便的资源化利用途径,将蚯蚓粪便在300、500和700 ℃下热解碳化制备生物炭(分别记为BC300、BC500和BC700),对所得生物炭的基本理化性质(包括物质组成、表面官能团、孔隙结构等)进行分析,并将其用于吸附水体中E2,考察生物炭投加量、溶液pH、反应时间及初始ρ(E2)对生物炭吸附性能的影响,并探讨了吸附机理.结果表明:随热解温度的升高,生物炭的H/C(原子比)由0.13降至0.03,O/C(原子比)由0.46降至0.02,芳香性增强,极性降低,逐渐由脂肪炭结构过渡到芳香炭结构;生物炭比表面积由24.33 m2/g增至76.29 m2/g,总孔体积由0.09 cm3/g增至0.19 cm3/g.不同热解温度下制备的生物炭对E2的吸附过程均符合准二级动力学方程,拟合系数大于0.991;Langmuir和Freundlich等温吸附模型均能较好地描述蚯蚓粪便生物炭对E2的吸附过程,Langmuir理论最大吸附量表现为BC700(7.66 mg/g)>BC500(5.23 mg/g)>BC300(3.32 mg/g).随热解温度的升高,O/C和H/C降低,说明碳化程度增强,生物炭吸附E2的分配作用减弱而表面吸附作用增强.研究显示,蚯蚓粪便生物炭对E2的吸附效果随比表面积和孔体积的增加而增强.   相似文献   

13.
为探究不同裂解温度下稻壳生物炭的结构和性质差异及其对阿特拉津(AT)的吸附作用机制和构-效关系,以稻壳为原料在300、500和700℃下制备稻壳生物炭(分别记为RH300、RH500、RH700),通过电镜扫描、元素分析仪、比表面积分析仪和傅里叶变换红外光谱分析仪等对3种稻壳生物炭进行结构表征分析,并采用批量等温吸附法研究稻壳生物炭对AT的吸附特性.结果表明:裂解温度由300℃升至700℃时,稻壳生物炭中w(C)由48.81%升至64.67%,w(H)、w(N)和w(O)则由3.22%、1.45%和34.66%分别降至0.89%、0.92%和16.29%,原子比H/C、O/C和(O+N)/C值均降低.可见,随着裂解温度升高,稻壳生物炭的芳香性增强,亲水性和极性降低,且比表面积和孔体积增大,平均孔径减小.3种稻壳生物炭对AT的吸附均可用Freundlich和Langmuir两种等温吸附模型进行较好地拟合(R≥0.948,P < 0.01),吸附作用及非线性程度与生物炭的比表面积(SSA)、芳香性(H/C)、亲水性(O/C)和极性〔(O+N)/C〕呈良好的指数关系,大小表现为RH700 > RH500 > RH300.稻壳生物炭对AT的吸附机制主要包括分配作用和表面吸附,分配作用强度与生物炭的极性和炭化程度有关;而表面吸附作用与AT的分子大小有关,3种稻壳生物炭对AT的表面吸附除表面覆盖外,还存在多层平铺、毛细管现象和孔隙填充等.研究显示,裂解温度是影响生物炭吸附有机污染物的重要因素,在综合考虑成本和制备工艺的同时,适当提高裂解温度可增强生物炭对有机污染物的吸附作用.   相似文献   

14.
本研究采用室内模拟实验的方法,考察了生物炭(热解温度200,300,400,500℃)对Pb(Ⅱ)的吸附行为,并以草酸和柠檬酸为代表,探讨有机酸对生物炭吸附Pb(Ⅱ)的影响.结果表明:Langmuir模型较Freundlich模型更适合于对两类生物炭(花生壳生物炭、松木生物炭)吸附Pb(Ⅱ)的数据进行拟合,200℃制备的花生壳生物炭对Pb(Ⅱ)的吸附容量最大;生物炭吸附Pb(Ⅱ)的过程为自发过程,且花生壳生物炭强于松木生物炭,低温生物炭强于高温生物炭;柠檬酸浓度为2.60×10-2mmol/L及草酸浓度为7.65×10-2mmol/L以下时,其在生物炭表面的吸附为Pb(Ⅱ)提供了更多的吸附位点,从而促进了Pb(Ⅱ)吸附;有机酸浓度增大以后,占据生物炭的内部孔隙,竞争重金属吸附位点,从而抑制了Pb(Ⅱ)在生物炭上的吸附.本研究将为系统认识生物炭的环境效应提供重要的基础信息,有助于全面评估有机酸影响下生物炭在环境修复中的功能.  相似文献   

15.
不同温度桉树叶生物炭对Cd2+的吸附特性及机制   总被引:2,自引:0,他引:2  
通过元素分析、BET-N2、Zeta电位、Boehm滴定,SEM-EDS、FTIR等分析方法对不同热解温度(300、500和700℃)下制备的桉树叶生物炭进行表征,研究了3种生物炭(BC300、BC500和BC700)对Cd2+的吸附特性与机制.结果表明,随温度升高,生物炭产率下降,灰分、pH值和Zeta负电荷量上升,比表面积增大.当Cd2+浓度为20mg/L时,平衡时间依次为80min(BC700)<360min(BC500)<540min(BC300),均符合准二级动力学模型(R2>0.98),以化学吸附为主.BC300和BC500吸附过程均符合Langmuir和Freundlich模型,BC700更符合Freundlich模型,最大吸附量依次为BC700(94.32mg/g) > BC500(67.07mg/g) > BC300(60.38mg/g).在Boehm滴定结果分析的基础上,结合FTIR和SEM-EDS,表明生物炭吸附机制主要为静电吸附和官能团络合作用.BC700吸附性能最佳,原因可能是具有较大的比表面积、较多的负电荷量和较为丰富的官能团.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号