首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 671 毫秒
1.
周圆  支丽玲  郑凯凯  王燕  李激 《环境工程》2020,38(7):100-108
反硝化过程是影响污水处理厂出水总氮达标排放的重要环节之一,进水碳源、回流比、溶解氧(DO)和搅拌方式等均为影响活性污泥反硝化性能的重要因素。通过对太湖流域58座污水处理厂提标改造的运行效果进行评估分析,并对水质波动规律、工艺设计及设备设施等方面进行调研及优化分析,研究了不同条件对活性污泥反硝化速率的影响,探讨了污水处理厂在实际生产运行中反硝化脱氮过程主要存在的问题及对策。结果表明:各厂反硝化速率在0~5.18 mg NO3--N/(g VSS·h)时,平均反硝化速率为1.40 mg NO3--N/(g VSS·h),进水碳源浓度较低为各个污水处理厂反硝化速率较低的主要原因。其中外加碳源的种类、投加点位对反硝化脱氮具有较大的影响,在各厂进水中投加易降解碳源并保持较高的搅拌速率后,发现反硝化潜力为1.16~20.80 mg NO3--N/(g VSS·h),表明改善进水水质并创造较好的反硝化条件,有利于整体反硝化水平的提升。此外,充分的搅拌条件也可增强污泥的反硝化性能。另外,选择合适的内回流比可以有效强化生物反硝化脱氮性能,但内回流中高DO对反硝化影响较大,降低回流DO可以有效提高NO3--N去除量。  相似文献   

2.
马斌  许鑫鑫  高茂鸿  委燕  彭永臻 《环境科学》2020,41(3):1377-1383
短程反硝化厌氧氨氧化是一种新型生物脱氮技术,应用于城市污水深度脱氮有望大幅降低外碳源投加量.本研究接种厌氧氨氧化污泥,考察了短程反硝化厌氧氨氧化的深度脱氮性能与污泥特性.结果表明,接种厌氧氨氧化污泥可迅速启动短程反硝化厌氧氨氧化系统,在进水COD/TN为2.19±0.08时,出水TN浓度为(4.82±1.84)mg·L~(-1),实现了低碳源污水深度脱氮.系统粒径大于0.20 mm的污泥占86.16%,污泥实现了颗粒化,有助于厌氧氨氧化菌在系统内的有效持留.将短程反硝化厌氧氨氧化深度脱氮应用于城市污水处理厂二沉池出水深度脱氮,可降低外碳源投加量,同时可降低污水处理厂硝化池耗氧量.  相似文献   

3.
黄筹  王燕  郑凯凯  王硕  李激 《环境工程》2020,38(7):58-65
随着全国重点流域城镇污水处理厂迎来新一轮提标改造,其中部分污水处理厂对出水总磷(TP)的排放限值由0.5 mg/L降低为0.3 mg/L,甚至降至0.2 mg/L,这对城镇污水处理厂除磷提出了新的挑战。通过对全国58座执行GB 18918-2002《城镇污水处理厂污染物排放标准》一级A标准的城镇污水处理厂进行调研分析,探讨了目前污水处理厂在实际生产运行中除磷存在的主要问题并给出相应对策,为今后高TP标准排放下污水处理厂的运行管理提供技术指导。调研结果表明:各污水处理厂的释磷潜力为0.01~23.98 mg/(g·h),其平均值为2.77 mg/(g·h),释磷潜力普遍较弱。生物除磷效果较差的主要原因为进水碳源不足、厌氧区存在高浓度硝态氮及同步化学除磷的抑制作用。基于上述调查分析,有针对性地提出了具体的调控措施,并建议污水处理厂要根据进水水质情况,通过静态实验确定最佳除磷药剂种类及合适的投加量,有效控制化学除磷过程,从而达到节省药耗的目的。  相似文献   

4.
某污水深度污水处理厂的瞬时进水量波动较大,反硝化生物滤池存在碳源投加不经济和出水TN不稳定的问题。根据历史甲醇投加量及水质数据得知,实际反硝化C/N约为7,制定了《甲醇加药量指导表》。操作人员可根据进水流量、进水TN数据,在该表中查询所需设定的甲醇投加流量。操作人员每小时调整1次甲醇投加量,从而实现了甲醇投加量的人工精细化调控。进水TN以“NO-3-N+常数n”表示,其中NO-3-N由曝气滤池总出水的硝态氮仪表读取,“常数n”则根据出水在线监测数据校核或调整,一般相对稳定且为2左右。尽管反硝化所需的碳氮比是变化的,且随着TN去除量的降低而升高,但仍可通过调整“常数n”的取值,实现甲醇投加量的精细化调控。通过精细化调控,使得出水TN平均值由5 mg/L稳定提高至8 mg/L,节约了约3 mg/L TN所消耗的碳源。预计精细化调控可实现年均出水ρ(TN)提高2 mg/L,年节约25%(150万元)的甲醇药剂费,基本可达到与自动化精确加药相当的效果。该方法操作简单,具有一定的工程应用价值。  相似文献   

5.
以污水厂实际二级出水为处理目标,通过中试试验研究了陶粒滤料反硝化生物滤池、固定床反硝化砂滤池和连续过滤连续反冲砂滤池的特性。以甲醇作为外加碳源,3种滤池均可实现出水平均总氮小于5 mg/L。不足量投加外碳源会出现出水亚硝态氮的积累。当进水TN为15 mg/L左右时,为达到出水TN小于5 mg/L,生物滤池、固定床砂滤池和连续过滤砂滤池建议滤速分别为不大于8,5.2,6.2 m/h;滤池反硝化碳源投加比例分别为4.28,3.0,3.2 g甲醇/gTN;对应的反硝化容积负荷平均值分别为1.1,0.8,1.2 kg/(m3·d)。进水组分分析发现,有机氮不是出水总氮小于5 mg/L的限制因素。  相似文献   

6.
江苏省于2018年6月颁布了DB 32/1072—2018《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》,随后太湖流域城镇污水处理厂开展了新一轮的提标改造。以太湖流域某市政污水处理厂为研究对象,采用全流程分析方法作为评估诊断的手段,探讨奥贝尔(Orbal)氧化沟工艺在实际运行过程中存在的主要问题。结果表明:该厂活性污泥的反硝化潜力和速率分别为8.0,2.24 mg NO3--N/(g VSS·h),通过化学需氧量(COD)及总氮(TN)的全流程分析可知,碳源相对缺乏、内回流比低、氧化沟底部淤积等因素限制了脱氮效率的进一步提高,优化运行后尚有一定的脱氮潜力。这为该厂的实际运行管理及后续的提标改造方案设计提供依据,也为类似具有提标改造需求的城镇污水处理厂提供借鉴。  相似文献   

7.
以城市污水处理厂倒置A2/O工艺为研究对象,介绍了工艺基本情况、主要工艺设计参数及技术特点。对2017—2018年污水处理厂出水的水质进行分析,结果表明:倒置A2/O工艺可有效去除COD及BOD5,脱氮除磷功能显著。并提出了碳源投加点位、污泥外回流比及曝气池末端DO的优化控制方案。夏、秋季节,控制污泥外回流比为60%~75%、硝化液回流比为100%~150%、曝气池末端ρ(DO)为1.5~3.0 mg/L;冬、春季节控制污泥外回流比为120%~150%、硝化液回流比为200%~250%、曝气池末端ρ(DO)为3.0~5.0 mg/L,可获得较好的污染物去除效果。污水出水ρ(COD)均值为26.1 mg/L,去除率为90.4%;出水ρ(TN)均值为7.69 mg/L,去除率为78.1%;出水ρ(NH4+-N)均值为0.445 mg/L,去除率为98.3%。通过改变除磷药剂投加点位及建设药剂自动化投加系统的方式优化除磷,实际投加量为2.5 t/d,节省了药剂费用,出水ρ(TP)均值为0.194 mg/L,去除率为96.7%。  相似文献   

8.
A/O生物脱氮工艺的反硝化动力学试验   总被引:5,自引:0,他引:5       下载免费PDF全文
通过SBR反应器间歇试验,研究了投加外碳源后系统的反硝化潜力和反硝化速率的变化.结果表明,向原有淀粉废水中投加外碳源乙醇废液后,可以明显提高系统的反硝化速率和反硝化潜力,反硝化速率由0.74mg/(g·h)增加到2.11mg/(g·h),反硝化潜力由5.6mg/L增加到16.2mg/L.脉冲投加淀粉废水进行缺氧反硝化间歇试验,可以获得系统污泥动力学信息,确定原水的反硝化潜力,并可估计城市污水处理厂的总反硝化潜力,因此可以预测获得最小出水硝酸氮浓度的控制策略.相对于COD/N,如果确定了系统反硝化潜力和污水水质能获得更多信息.  相似文献   

9.
为解决AnMBR(厌氧膜生物反应器)出水NH4+脱除的问题,提出利用AnMBR出水中残余CODCr、溶解性CH4以及低价态硫元素,通过构建缺氧滤池和好氧滤池进行生物异养和硫自养脱氮的方法,进一步削减AnMBR出水CODCr、去除溶解性CH4、同时同步生物脱氮.结果表明:①缺氧滤池与好氧滤池经过120 d单独驯化与33 d串联驯化后,在HRT(hydraulic retention time,水力停留时间)为6 h、进水为实际AnMBR出水的工况条件下,出水ρ(TN)为17.93 mg/L,去除率为52.7%;出水ρ(NH4+-N)为2.78 mg/L,去除率为92.3%,达到GB 18918-2002《城镇污水处理厂污染物排放标准》一级B标准.在HRT为8 h工况条件下,出水ρ(TN)为14.60 mg/L,去除率为59.0%;出水ρ(NH4+-N)为2.22 mg/L,去除率为93.7%,达到GB 18918-2002一级A标准.②脱氮滤池中氮脱除路径主要包括残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化,并通过物料衡算评价了三者对于氮脱除的贡献,在HRT为6 h的工况条件下,脱氮滤池脱氮过程中残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化三者占比分别为54.1%、24.3%和21.5%;在HRT为8 h的工况条件下,脱氮滤池脱氮过程中3种途径占比分别为70.4%、13.8%和15.8%.研究显示,脱氮滤池可以实现对AnMBR出水的低耗生物脱氮以及整体水质的达标排放.   相似文献   

10.
韩露  韩芸  代洋  张进  钟晨  卓杨 《中国环境科学》2021,41(8):3653-3659
以污泥热水解滤液作为外加碳源,通过对SBR反应器脱氮效果、碳氮平衡及活性污泥EPS的分析,探究了污泥热水解滤液的脱氮性能,并与传统碳源乙酸钠进行了比较.结果表明,污泥热水解滤液和乙酸钠作为碳源可将出水TN从27.64mg/L分别降至12.05mg/L和7.98mg/L,说明两种碳源的投加均能强化反硝化过程;通过碳氮平衡分析可以看出,未加入碳源时污水TN去除率只有47.83%,加入热水解滤液后污水的TN去除率达到了81.30%,且滤液增加的氮负荷远远小于滤液作为外加碳源去除污水中TN的量;加入热水解滤液和乙酸钠时,活性污泥的EPS均有增加,但乙酸钠为碳源时的EPS含量更高,而EPS的增加引起了污泥SVI的增大.  相似文献   

11.
为实现污水处理的深度脱氮除磷及蛋白质源污泥增量,进行了生物吸附/MBR/硫铁自养反硝化组合工艺处理城镇污水的试验研究.结果表明,生物吸附池可以快速富集进水中的大部分有机物,COD平均去除率为55.1%,剩余污泥采用厌氧发酵方式处理,用于生产优质碳源.通过组合工艺系统中的硝化、硫自养反硝化及铁屑除磷作用,出水氨氮、总氮和总磷分别达到1、5和0.4 mg·L~(-1)以下.优质碳源投加到MBR工艺段,碳源环境的改善使得污泥增长率从0.17 g VSS/g COD提高至0.49 g VSS/g COD,进水中总氮的同化比例从40%提高至59%.此外,污泥中蛋白质及氨基酸含量也显著增长,增长率分别为18.3%和19.7%.组合工艺在获得高排放标准水质的同时,实现了高蛋白质源污泥的增量,可为污泥资源化利用提供优质原料.  相似文献   

12.
为了实现污水处理的深度脱氮除磷及蛋白质源污泥增量,分别采用生物吸附/A~2O和生物吸附/MBR/硫铁自养反硝化工艺进行对比试验研究.结果表明,生物吸附工艺可以快速富集进水中的大部分有机物,剩余污泥采用厌氧发酵方式处理,用于生产优质碳源.两套污水处理工艺均获得了优质水质,出水氨氮、总氮和总磷分别达到5、7和0.4 mg·L~(-1)以下.优质碳源投加到A~2O和MBR工艺段,碳源环境的改善使得污泥增长率和氮的同化比例显著提高,第4阶段污泥产率分别达到0.59和0.49 g·g~(-1)(以每g COD产VSS量(g)计),氮的同化率分别达到66%和59%.此外,污泥中蛋白质及氨基酸含量也显著增长,A~2O工艺段增长率分别为34.7%和31.2%,MBR工艺段相应的增长率分别为19.7%和18.3%,实现了蛋白质源污泥的增量,为污泥资源化利用提供了优质原料.  相似文献   

13.
基于低碳源污水易硝化难反硝化的问题,构建了在A2O缺氧池添加天然碳源玉米芯的中试系统,采用物料衡算、反硝化速率测定和微生物群落分析等方法,研究了该系统的脱氮效能和反硝化体系特征.结果表明,TN去除率提升13%,出水从16.2降至10.0mg/L;同时不会造成出水氨氮和色度超标的风险.物料衡算表明,COD碳源的氧化消耗量和出水排放量降低,更多的碳源用于反硝化和污泥增殖,从而提升了氮素的去除量,其中反硝化的提升贡献更大.缺氧池形成了悬浮污泥加生物膜的复合型脱氮体系:在污水自身碳源存在时,生物膜和悬浮污泥的反硝化速率分别为24.89和32.42mg/(L∙h),可实现快速脱氮;当自身碳源消耗殆尽,二者的反硝化速率分别是4.71和1.73mg/(L×h),单位生物量反硝化速率分别是1.58和59.1mg NO3--N/(g VSS×h),表明玉米芯主要被生物膜利用以维持反硝化进行.该体系的主要反硝化菌属为Azospira,此外在生物膜表面还富集了能够附着生长的IamiaHaliangium,以及能够降解玉米芯木质素的Sulfuritalea等反硝化菌属.  相似文献   

14.
内蒙古西乌珠穆沁旗污水净化厂采用恒定水位运行的CWSBR工艺,经过接近两个月的污泥培养和试运行,出水水质达到城镇污水排放一级A标准。针对低C/N进水的实际状况,CWSBR系统通过采用单个周期多步进水及时序的可控调整,强化了系统的脱氮除磷性能。稳定运行阶段出水NH4+-N为3 mg/L以下,TN为15 mg/L以下,TP为0.5 mg/L以下。另外,该厂出水通过中水储池及升压提升,能够满足市政及工业回用需求,回用率达到80%以上。  相似文献   

15.
周政  李怀波  王燕  王硕  李激 《中国环境科学》2022,42(11):5088-5099
为探明低碳氮比进水条件下AAO污水处理厂的碳排放特征,提出可行的低碳运行策略,基于排放因子法对7座低碳氮比进水AAO污水处理厂(分为AAO组和AAO-MBR组)运行1a产生的碳排放进行核算与评价,对具有显著低碳表现的污水处理厂开展全流程分析剖析其碳减排途径。结果表明,电耗和N2O排放是主要碳排放来源,分别贡献49.43%和25.75%的碳排放。AAO-MBR组以间接碳排放为主,电耗碳排放占至约60%,而AAO组生物作用导致的直接碳排放占主导。AAO组平均吨水比碳排放显著低于AAO-MBR组(0.47和0.79kgCO2eq/m3),更具低碳运行潜力。7座污水处理厂中,WWTP7各项比碳排放评价指标均为最低,意味着其最具低碳运行能力。充分利用进水碳源,多路径协同脱氮除磷同时精准控制溶解氧浓度避免过曝气是其大幅削减能耗和物耗,实现碳减排的关键路径。  相似文献   

16.
污泥厌氧产酸发酵液作碳源强化污水脱氮除磷中试研究   总被引:7,自引:6,他引:1  
为研究城市污泥厌氧产酸发酵液作为补充碳源强化生活污水脱氮除磷系统的效果和可行性,建造了一个总有效体积为4 660 L的A2/O中试反应系统,以实际城市污水为研究对象,考察了添加污泥产酸发酵液后的污水脱氮除磷效果并和单纯添加乙酸作碳源的效果进行了比较.结果表明,在进水COD为243.7 mg·L-1、NH+4-N为30.9 mg·L-1、TN为42.9 mg·L-1、TP为2.8 mg·L-1、硝化液回流比为200%和污泥回流比为100%的条件下,向缺氧池中投加乙酸能增强系统脱氮除磷效果,反应器的最佳进水流量和投加碳源SCOD增量分别为7 500 L·d-1和50 mg·L-1.污泥发酵液代替乙酸作为外加碳源时的平均出水COD、NH+4-N、TN和TP去除率分别为81.60%、88.91%、64.86%和87.61%,相对应的出水浓度分别为42.18、2.77、11.92和0.19 mg·L-1,满足我国《城镇污水处理厂污染物排放标准》GB 18918-2002所规定的一级A标准.结果表明,投加污泥产酸发酵液作为脱氮除磷碳源可达到和乙酸同样的效果,具有实际可行性,这为城市污泥处理处置实现资源化提供了一条新的可行途径.  相似文献   

17.
通过小试实验,探究提高氨氮、COD浓度、水力剪切力以及投加活性污泥和活性炭粉末对解体好氧颗粒污泥的修复效果,得出进水COD浓度以及投加活性污泥和活性炭对颗粒修复影响较大但单一修复方式效果不理想,进而针对这3个因素,采用响应面法得出其最优耦合修复工况(进水COD、投加活性炭和活性污泥质量浓度分别340mg/L、4.64g/L和2900mg/L).经过17d运行,解体AGS得到良好修复并通过扫描电镜(SEM)对其形态进行观察,可知修复后AGS表面以丝状菌为主,孔隙、裂痕大幅减少,污泥以活性炭为晶核形成新的AGS并且颗粒修复后粒径由(0.89±0.5) mm快速增加到了(2.19±0.4) mm,氨氧化速率(以LVSS记)由2.49mg/(g·h)提高到3.18mg/(g·h),由此验证了这种耦合修复方式对解体AGS具有高效且快速的修复作用.  相似文献   

18.
A2/O污水处理工艺中基质转化机理研究   总被引:3,自引:2,他引:1  
徐伟锋  陈银广  顾国维  张芳 《环境科学》2006,27(11):2228-2232
以实际污水培养驯化污泥的小试规模A2/O工艺为研究对象,对系统中基质的转化机理及硝态氮对基质转化的影响进行了批式试验研究.结果表明,在无硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD有51%可被聚磷菌吸收并合成为聚羟基链烷酸(PHAs);缺氧和好氧条件下的比吸磷速率为3.87和6.54 mg/(g·h),利用单位PHAs的吸磷量(rP/PHA)分别为0.38和0.78.而在有硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD仅有30.8%可被聚磷菌吸收并合成PHAs,61.5%用于还原硝态氮;缺氧和好氧条件下的比吸磷速率为2.24和4.58 mg/(g·h),rP/PHA值分别为0.35和0.77.同时,在这2个系统中厌氧阶段释放的磷和消耗的COD成良好的线性关系.硝态氮存在于厌氧环境会降低聚磷菌的厌氧释磷速率和效率,使PHAs的合成量减少,从而降低聚磷菌的缺氧和好氧吸磷速率,但并不会影响其吸磷能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号